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Abstract. Probably the most popular algorithm for unconstrained minimization for problems of moderate
dimension is the Nelder-Mead algorithm published in 1965. Despite its age only limited convergence results exist.
Several counterexamples can be found in the literature for which the algorithm performs badly or even fails.
A convergent variant derived from the original Nelder-Mead algorithm is presented. The proposed algorithm’s
convergence is based on the principle of grid restrainment and therefore does not require sufficient descent as
the recent convergent variant proposed by Price, Coope, and Byatt. Convergence properties of the proposed grid-
restrained algorithm are analysed. Results of numerical testing are also included and compared to the results of
the algorithm proposed by Price et al. The results clearly demonstrate that the proposed grid-restrained algorithm
is an efficient direct search method.
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1. Introduction

We consider the local unconstrained optimization problem starting with initial point x0 ∈ R
n

where xl ∈ R
n is sought, subject to

f : R
n → R

f (xl ) ≤ f (x0)

∃ δ > 0 : f (xl) ≤ f (xl + a) ∀a ∈ R
n, ‖a‖ ≤ δ (1)

f (x) is often referred to as the cost function (CF). If f (x) is continuous and continuously
differentiable (C1) all points (xl) that satisfy (1) are stationary points of f (x).

To solve problems of the form (1) many different methods have been devised. Lately
there has been increased activity in the area of direct search optimization methods [8].
The main feature of direct search methods is that they don’t use the gradient of the cost
function in the process of search. Probably the most popular direct search method is the
Nelder-Mead (NM) algorithm [11] devised in the 1960s. The NM algorithm tries to find
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a stationary point of the CF by moving and reshaping a polytope with n + 1 vertices,
also referred to as the simplex. Despite its popularity the theoretical results regarding its
convergence properties are very limited [6]. Furthermore several examples for which the
NM algorithm either converges very slowly or even fails to converge to a stationary point
of the CF were provided by [14, 17], and [9].

Shortly after McKinnon’s results were published Kelley [5] proposed oriented restart as
means for improving convergence properties of the original NM algorithm. Nevertheless
oriented restart does not guarantee convergence. Tseng [16] presented a more general,
sufficient descent based approach (fortified descent simplical search method), capable of
guaranteeing convergence to a local minimizer. His paper includes an extensive overview
of papers from English, Russian, and Chinese literature dealing with simplex-based al-
gorithms. Recently a slightly different method, focusing more on simplex reshape than
preventing simplex degeneration, was presented by Price et al. [12] and is based on Byatt’s
MSc thesis [1] (referred to also as sufficient descent Nelder-Mead algorithm or SDNMA
for short). Their approach is derived from the class of frame-based methods established by
Coope and Price [2]. All of these approaches for ensuring convergence require the con-
secutive simplices to fulfill a sufficient descent condition, which is not quite in the spirit
of the original NM algorithm. The original NM algorithm requires only simple descent
between consecutive iterates. Furthermore only the relative ordering of the simplex vertices
according to the CF value is needed by the algorithm. Rykov [13] has also published a class
of convergent NM methods where ideas like the pseudo-expansion of Coope, Price, and
Byatt first appeared in more general form.

Lately convergence properties of direct search descent methods have received a lot of
attention. Most of this attention went to the family of methods which accept a trial point
if it decreases the best-yet CF value (descent methods). The original NM algorithm and
SDNMA concentrate on improving the worst point of the simplex, which is not the best-yet
point. With this peculiarity in mind we can still treat them as descent methods if we consider
only the best point of the simplex. This point is not allowed to move to a position with a
higher CF value in any of the above mentioned algorithms.

Currently two approaches are known for ensuring the convergence of such methods to a
local minimizer of the CF. The first approach is based on a sufficient descent requirement
imposed on CF values at consecutive iterates (e.g. SDNMA). The amount of sufficient
descent is supposed to gradually become 0 as the method converges to a set of stationary
points of the CF [2]. The second approach requires only simple descent from the accepted
trial point, but on the other hand all trial points must lie on a grid [3]. The grid is then
gradually refined as the method approaches a stationary point of the CF. To the authors’
best knowledge there exists no variant of the NM algorithm that would take advantage of
the grid-based approach at the moment.

The original NM algorithm manipulates a set of n+1 vertices in R
n . Let x1, x2, . . . , xn+1

denote these vertices. Simplex ordering relabels the vertices according to the CF value so
that f (x1) ≤ f (x2) ≤ · · · ≤ f (xn+1). For the sake of simplicity of notation f i is used
for the CF value at xi . The centroid of the n vertices with the lowest CF value is defined
as xcb = 1

n

∑n
i=1 xi . The centroid and xn+1 define the line along which candidates are

examined for replacing the vertex with the highest CF value. The examined points can be



GRID RESTRAINED NELDER-MEAD ALGORITHM

expressed as

x(γ ) = xcb + γ (xcb − xn+1). (1.2)

They are denoted by xr , xe, xoc, and xic with the corresponding values of γ denoted by
γr , γe, γoc, and γic. They are often referred to as the reflection, expansion, outer contraction,
and inner contraction points. Under certain circumstances the simplex is shrunk towards
x1 using the formula x1 + γs(xi − x1) for i = 2, 3, . . . , n + 1.

Values of γ satisfy the following requirements

0 < γr < γe, γe > 1, 0 < γoc < 1, −1 < γic < 0, 0 < γs < 1. (1.3)

Nelder and Mead proposed the following values: γr = 1, γe = 2, and γoc = −γic =
γs = 0.5. Algorithm 1 summarizes the steps taken in one iteration of the NM algorithm
as stated by [6]. This algorithm differs slightly from the original version in [11] where
several ambiguities are present. The initial simplex can be chosen randomly or using some
predefined rules. The CF is evaluated at the simplex vertices upon which iterations of
algorithm 1 are repeated until some stopping condition is satisfied.

Algorithm 1. One iteration of the Nelder-Mead simplex algorithm.

1. Order the simplex.
2. Evaluate f r = f (xr ). If f r < f 1 evaluate f e = f (xe).

If f e < f r replace xn+1 with xe, otherwise replace it with xr .
3. If f 1 ≤ f r < f n , replace xn+1 with xr .
4. If f n ≤ f r < f n+1, evaluate f oc = f (xoc).

If f oc ≤ f n+1 replace xn+1 with xoc.
5. If f n+1 ≤ f r , evaluate f ic = f (xic).

If f ic ≤ f n+1, replace xn+1 with xic.
6. If xn+1 wasn’t replaced, shrink the simplex towards x1.

The remainder of the paper is divided as follows. In the second section relevant properties
of positive bases and grids are discussed, upon which the principle of grid restrainment is
introduced. The effects of grid restrainment on the properties of positive bases are examined
and the requirements for convergence to a stationary point of the CF are given. The third
section introduces the grid-restrained Nelder-Mead algorithm (GRNMA). The convergence
properties of GRNMA are analysed. The fourth section discusses implementation details
of the algorithm. Special attention is paid to the effects of finite precision floating point
arithmetic. In the final section the results of numerical trials on the Moré-Garbow-Hillstrom
[10] set of test problems for unconstrained optimization are presented. The performance of
GRNMA is compared to the performance of SDNMA. Finally the conclusions are given.

Notation. Vectors are denoted by lowercase letters and are assumed to be column vectors
so that xT y denotes the scalar product of x and y, Matrices are denoted by uppercase
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letters e.g. A. The corresponding lowercase letter with a superscript is reserved for matrix
columns (e.g. ai ). Set members are also denoted with a superscript. Members of a sequence
{xk}∞k=1 are denoted by a subscript (e.g. xk). Calligraphic uppercase letters are reserved for
transformations and sets. R and Z denote the set of real and integer numbers respectively.
The remaining notation is introduced in the text as needed.

2. Positive bases, grids, and grid restrainment

A set of nonzero vectors B+ = {b1, b2, . . . , br } positively spans R
n if every x ∈ R

n can
be expressed as a nonnegative linear combination of members of B+ (x = ∑r

i=1 αi bi with
αi ≥ 0). B+ is a positive basis [4] for R

n if it positively spans R
n and no b ∈ B+ can

be expressed as a nonnegative linear combination of vectors from B+ \ {b}. A positive
basis must have at least n + 1 members (minimal positive basis) and can have at most
2n members (maximal positive basis). For every positive basis B+ there exists a subset
B ⊂ B+ containing n vectors such that B is a linear basis for R

n .
Positive bases have a useful property pointed out by Torczon [15] for r = 2n and later

more generally by Lewis and Torczon [7] for n + 1 ≤ r ≤ 2n.

∃ ε > 0 such that ∀x ∈ R
n ∃ b ∈ B+ : xT b ≥ ε‖x‖‖b‖ (2.1)

For a given positive basis B+ ε has an upper bound ε0(B+)

ε ≤ ε0(B+) = min
x∈Rn ,‖x‖�=0

max
b∈B+

xT b

‖x‖‖b‖ (2.2)

In [15] and [7] an estimate of ε0 is derived. Consider the case of an orthogonal maximal
positive basis where B+ = {b1, b2, . . . , bn,−b1,−b2, . . . ,−bn} and (bi )T b j �= 0 only for
i = j . For such a positive basis ε0 is maximal (ε0 = n−1/2) considering all possible positive
bases for R

n .

Lemma 2.1. If (2.1) holds for a set of vectors B+ then that set positively spans R
n.

Proof: Let x0 = x be some vector from R
n and let bi denote the member of B+ for which

(xi−1)T bi/(‖bi‖‖xi−1‖) is maximal. Let αi bi denote the projection of xi−1 on the direction
of bi (with αi = (xi−1)T bi/‖bi‖2 ≥ 0 due to (2.1)). According to (2.1) the norm of αi bi is
bound from below by ε‖xi−1‖.

If we express the norm of xi−1 − αi bi and replace αi with (xi−1)T bi/‖bi‖2, we get

‖xi−1 − αi bi‖2 = ‖xi−1‖2 − ((xi−1)T bi/‖bi‖)2

By taking into account the lower bound on the norm of αi bi we get

‖xi−1 − αi bi‖2 ≤ ‖xi−1‖2(1 − ε2) (2.3)
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From xi = xi−1 − αi bi and (2.3) follows by induction ‖xi‖ ≤ ‖x0‖(1 − ε2)i/2. ‖xi‖
approaches zero geometrically. Therefore

∑∞
i=1 αi bi is convergent and due to the way the

series {αi bi }∞i=1 was constructed, converges to x .
The set B+ is finite and x = ∑∞

i=1 αi bi can be split into partial sums such that x =
∑|B+|

j=1 b j
∑∞

k=1 αi j,k = ∑|B+|
j=1 b jβ j . Since all αi are nonnegative, all β j must also be

nonnegative. �

Lemma 2.2. If (2.1) holds for a finite set of vectors B+ then that set contains a subset
which is a positive basis for R

n.

Proof: Due to Lemma 2 B+ positively spans R
n . Now choose b∗ ∈ B+ such that it can be

expressed as a nonnegative linear combination of remaining members of B+. If we remove
b∗ from B+ the resulting set still positively spans R

n . We can repeat this until we can find
no such b∗. When we are done the resulting B+ still positively spans R

n and no member
b ∈ B+ can be expressed as a nonnegative linear combination of members of B+\{b}. �

(2.1) and (2.2) assure us that for every positive basis B+ and every direction x there exists
a member of B+ for which the angle θ between x and b is bound (0 < θ ≤ arccos ε0(B+)).
In other words this means that for C1 functions we can always find descent along some
b ∈ B as long as the step in that direction is not too long and we are not at a stationary
point of f (x).

Lemma 2.3. Let B+ be a positive basis for R
n with r members and a ∈ R

n. Then

aT b ≥ 0 ∀b ∈ B+ =⇒ a = 0

Proof: Since B+ is a positive basis, we can write −a = ∑r
i=1 αi bi where all αi ≥ 0.

Now 0 ≥ −aT a = ∑r
i=1 αi aT bi ≥ 0. This is true only if a = 0. �

Definition 2.4. A limit point of a sequence of positive bases {B+
i }∞i=1 is a set B+

∞ with
cardinality r for which a subsequence {B+

i j
}∞j=1 of sets with cardinality r exists such that

lim
j→∞

min
b∈B+

i j

‖b − b∞‖ = 0, ∀b∞ ∈ B+
∞ (2.4)

Lemma 2.4. Suppose the sequence {B+
i }∞i=1 of positive bases for R

n fulfills the following
requirements

lim sup
i→∞

max
b∈B+

i

‖b‖ < ∞, (2.5)

lim inf
i→∞

min
b∈B+

i

‖b‖ > 0, (2.6)

lim inf
i→∞

ε0(B+
i ) > 0. (2.7)

Then at least one B+
∞ exists and contains a subset which is a positive basis for R

n.
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Proof: Equation (2.5) causes the members of positive bases to be bound from above in
norm. Therefore at least one limit point B+

∞ of the sequence must exist. Due to (2.6) this
limit point can’t have members which are zero vectors. Finally (2.7) ensures that (2.1) holds
for B+

∞ and Lemma 2.2 guarantees the existence of a subset which is a positive basis for
R

n . �

A grid G(z,B,�) is a set of points defined as

G(z,B,�) =
{

x : x = z +
n∑

i=1

N i bi�i , N i ∈ Z

}

(2.8)

where z is the grid origin, B is the generating set of linear basis vectors, and � =
[�0,�1, . . . ,�n] is the grid scaling vector. Without the loss of generality we can as-
sume that ‖b‖ = 1 for all b ∈ B. The intersection of a grid and any compact set C is a finite
set of points.

In [3] the grid is generated by a linear basis B. But since the framework of [3] allows
moves in the remaining r − n directions that complement B into a positive basis B+, an
additional restriction is introduced. The remaining r − n directions must be integer linear
combinations of the first n directions. This guarantees that the points produced by the
algorithm remain on the grid.

In the remainder of the paper we assume B = {e1, e2, . . . , en}, where ei are unit vectors
constituting the orthogonal basis for R

n . The notation G(z,�) is short for G(z, {e1, e2, . . . ,

en},�). Sometimes, when it is clear which z and � are meant, the notation G will be used
instead of G(z,�).

Definition 2.6. A grid restrainment operator R(G, x) is a transformation R
n → G with

the following property

∀x ∈ R
n, xG = R(G, x)

� ∃x ′ ∈ G : ‖x − x ′‖ < ‖x − xG‖

The restrainment error vector δ = x − xG plays an important role in the convergence
theorem of the grid-restrained algorithm. It is fairly easy to show that for an orthogonal
grid G(z,�) the restrainment error is bound from above by ‖δ‖ ≤ ‖�‖/2 = δ0.

The next lemma deals with the effect of grid restrainment on ε0(D).

Lemma 2.7. Suppose that D+ is a positive basis and D+
G is the set of vectors obtained by

restraining members of D+ to grid G(0,�). Then the following relation holds

ε0(D+
G ) ≥ ε0(D+) − δ0/‖dmin‖

1 + δ0/‖dmin‖ (2.9)

where dmin = arg mind∈D+ ‖d‖.
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Proof: Let x denote an arbitrary member of R
n and d the corresponding member of D+,

for which (2.1) holds. Further let d ′ = R(G, d) = d − δ. Due to ‖δ‖ ≤ δ0 we have

‖d ′‖ ≤ ‖d‖ + δ0 (2.10)

From (2.1) the following estimate can be obtained

xT d ′ = xT d + xT δ ≥ ε0‖x‖‖d‖ − δ0‖x‖ = ‖x‖‖d‖(ε0 − δ0/‖d‖) (2.11)

ε0 is short for ε0(D+). If we take into account (2.10) and (2.11) we get

xT d ′

‖x‖‖d ′‖ ≥ ε0 − δ0/‖d‖
1 + δ0/‖d‖ (2.12)

This is an estimate for the cosine of the angle between x and basis vector d ′ ∈ D+
G

obtained with grid restrainment of arg maxd∈D+ xT d/(‖x‖‖d‖). δ0 is the upper bound on
restrainment error.

From (2.12) the lower bound on ε0(D+
G ) can now be expressed

min
x∈Rn ,‖x‖�=0

max
d ′∈D+

G

xT d ′

‖x‖‖d ′‖ ≥ min
x∈Rn ,‖x‖�=0

max
d∈D+

xTR(G, d)

‖x‖‖R(G, d)‖ ≥ min
d∈D+

ε0 − δ0/‖d‖
1 + δ0/‖d‖

= ε0 − δ0/‖dmin‖
1 + δ0/‖dmin‖

�

Lemma 2.7 ensures that a positive basis D+ will remain a positive basis after grid
restrainment if

δ0/‖dmin‖ < ε0(D+) (2.13)

The next lemma represents the basis for the convergence theorems of many direct search
algorithms.

Lemma 2.8. Let {xk}∞k=1 be a sequence of points from R
n, {B+

k }∞k=1 a sequence of positive
bases for R

n, and o(x) a function for which limx→0 o(x)/x = 0. Suppose the following
requirements are satisfied
1. there exists a compact set C subject to {x : f (x) ≤ f (x1)} ⊆ C,
2. f (x) is C1,
3. ∀k : f (xk) ≤ f (xk+1),
4. the sequence {B+

k }∞k=1 satisfies requirements (2.5), (2.6), and (2.7),
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5. there exists a sequence of scalars {ξk}∞k=1 such that

f (xk + ξkb) ≥ f (x) − o(ξk‖b‖) ∀b ∈ B+
k , (2.14)

lim
k→∞

ξk = 0. (2.15)

Then limk→∞ ‖∇ f (xk)‖ = 0.

Proof: Due to requirements 1 and 3 the sequence {xk}∞k=1 remains inside the compact set C
and thus admits at least one limit point. We can always choose a subsequence of {xk}∞k=1
that converges to x∞ and the corresponding subsequence of {B+

k }∞k=1 that converges to B+
∞

for any combination of limit points x∞ and B+
∞. Let the set K denote the indices of this

subsequence.
For all b ∈ B+

k we have

f (xk + ξkb) − f (xk) =
∫ ξk

t=0
bT (∇ f (xk + tb) − ∇ f (xk) + ∇ f (xk))dt

=
∫ ξk

t=0
bT (∇ f (xk + tb) − ∇ f (xk))dt + ξkbT ∇ f (xk)

Let M(x, a) denote max0≤t≤1 ‖∇ f (x + ta) − ∇ f (x)‖. If we also consider (2.14) we get

M(xk, ξkb) + bT ∇ f (xk)

‖b‖ ≥ −o(ξk‖b‖)

ξk‖b‖ ∀b ∈ B+
k (2.16)

Now take the limit of (2.16) as k ∈ K approaches infinity. Due to requirement 2 and
(2.15) M(x, a) approaches 0. Since the right hand side also approaches zero we get

bT ∇ f (x∞)

‖b‖ ≥ 0 ∀b ∈ B+
∞

From requirement 4 and Lemma 2.3 it follows then ‖∇ f (x∞)‖ = 0. Since x∞ is any
limit point of {xk}∞k=1, we conclude limk→∞ ‖∇ f (xk)‖ = 0. �

3. The grid-restrained simplex algorithm

To ensure convergence of the original NM algorithm we propose the restrainment of the
examined points to a grid. The grid can be refined when certain conditions are satisfied in
order to increase the precision of the search. Similarly as in [12] the proposed algorithm
reshapes the simplex in order to satisfy the convergence requirements. The algorithm
requires only simple descent, therefore the acceptance requirements for the outer contraction
point (xoc) and the inner contraction point (xoc) are stricter, as these two are the last resort for
the algorithm when it can’t find an improvement over f n+1. Acceptance requirements f oc <

f n and f ic < f n are proposed to replace the ones in steps 4 and 5 of Algorithm 1. Making
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the inequality more strict ensures that only a finite number of points are visited by the
simplex algorithm if the grid remains unchanged. Shrink steps are also omitted and replaced
by steps 7–9 of Algorithm 2 which constitute an algorithm conforming to the requirements
of Lemma 2.8. This way convergence is guaranteed as is demonstrated later in this section.

In order to form a positive basis around x1 the so-called pseudo-expand step was in-
troduced in [12]. It is calculated using the centroid of the n points with highest CF value
(xcw = 1

n

∑n+1
i=2 xi ) as x pe = x1 + (γe/γr − 1)(x1 − xcw). This point is also used in the

grid-restrained algorithm.
The algorithm starts with constructing a simplex around the initial point x0. The initial

grid G(z,�) with z = x0 is chosen. The CF is evaluated at the vertices of the initial simplex.
Then iterations of Algorithm 2 are repeated until some stopping condition is satisfied.

Let vi = xi+1 − x1, i = 1, 2, . . . , n denote the simplex side vectors, vmax the longest,
and vmin the shortest side vector. In his paper [16] Tseng stated that the interior angles of
the simplex should stay bounded away from zero. This requirement implies the following:

|detV | = |det[v1, v2, . . . , vn]| ≥ c‖vmax‖n. (3.1)

In [12] a simple and effective way for calculating the determinant (3.1) was presented.
The method relies on the fact that the points xr , xe, xoc, and xic are colinear with xcb and
xn+1, and that x pe is colinear with xcw and x1. Due to grid restrainment the colinearity is
broken. We propose a different method which is somewhat more expensive, yet applicable
to the grid-restrained simplex. The approach uses QR decomposition of V . Since Q is
an orthogonal matrix whose columns have norm 1, the determinant of V is equal to the
determinant of R. Since R is upper triangular (3.1) can be expressed as detV = ∏n

i=1 Rii .
The same Q and R used for determining the simplex shape can later be used for reshaping
the simplex. This way the price of doing a QR decomposition is justified.

Algorithm 2. The grid-restrained simplex algorithm.

1. Repeat iterations of the original NM algorithm without shrink steps and with modified
acceptance criteria for contraction points. Instead of (1.2) use
x(γ ) = R(G, xcb + γ (xcb − xn+1)).
When an iteration not replacing xn+1 (NM failure) is encountered, go to step 2.

2. xbest = arg minx∈{x1,x2,...,xn+1} f (x) and f best = f (xbest ).
3. If the simplex shape violates (3.1), reshape it by forming an orthogonal basis D =

{d1, d2, . . . , dn} subject to λ
n1/2‖�‖

2 ≤ ‖di‖ ≤ 

n1/2‖�‖

2 for all i = 1, 2, . . . , n. Con-
struct a simplex comprising x1 and xi+1 = R(G, x1 + di ) where i = 1, 2, . . . , n, and
evaluate CF at the new simplex vertices.

4. Order the simplex and evaluate CF at the grid-restrained pseudo-expand point to obtain
f pe = f (R(G, x pe)). If min( f pe, f 1, f 2, . . . , f n+1) ≥ f best go to step 7

5. If f pe < f best replace xi = xbest with x pe.
6. Go to step 1.
7. If a reshape happened at step 3 set l = 1, otherwise set l = 0.
8. Repeat the following steps.
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(a) If no reshape happened in this iteration of the algorithm, reshape now.
Otherwise reverse the basis vectors di .

(b) If l ≥ 2 and l mod 2 = 0
• Shrink the basis vectors by a factor of 0 < γs < 1.
• If ‖dmin‖ < λ

n1/2‖�‖
2 refine the grid by setting z = znew = x1 and � = �new.

(c) Evaluate CF at R(G, x1 + di ) for i = 1, 2, . . . , n.
(d) Set l = l + 1.
Until stopping condition is satisfied or mind∈D f (R(G, x1 + d)) < f 1.

9. Construct a new simplex comprising x1 and R(G, x1 + di ) where i = 1, 2, . . . , n.
10. If stopping condition is satisfied finish, else go to step 1.

dmax and dmin denote the longest and the shortest member ofD. λ and 
 are constants used
in bounds on the simplex side length. For the sake of convergence analysis we assume that
the optimization takes an infinite number of iterations described in Algorithm 2. This can
be achieved by removing the stopping condition. Let xm denote the point with the highest
CF value encountered by Algorithm 2. The first step towards proving the convergence to a
stationary point is the following lemma.

Lemma 3.1. If there exists a compact set C such that {x : f (x) ≤ f (xm)} ⊆ C, only a
finite number of CF evaluations may take place before the grid is refined.

Proof: The intersection of C and grid G(z,�) is a finite set of points. Since all examined
points come from G(z,�), only a finite number of points can be accepted into the simplex.
Strict inequality with respect to the second worst point in all the acceptance criteria for the
candidate point of the simplex algorithm makes sure that the algorithm can’t get trapped in
an infinite loop. Such a situation occurs when due to grid restrainment the worst point of the
simplex doesn’t change regardless of the simplex steps that are performed. Therefore the
number of consecutive ordinary NM iterations in step 1 is finite. Before another sequence
of such iterations is started a point with CF lower than f 1 can appear in steps 3, 4, or 8. Such
a point is of course accepted into the simplex. But this can happen only a finite number of
times if the grid isn’t refined. So eventually the algorithm ends up at step 8b with l ≥ 2
and l mod 2 = 0 causing a shrink step to be performed. At most �log(λ/
)/ log(γs)� + 1
shrink steps are needed for ‖dmin‖ < λ

n1/2‖�‖
2 to hold. At that point the grid is refined. �

The consequence of Lemma 3.1 is that there exists an infinite sequence {xk}∞k=1 of sim-
plex points with the lowest CF value (x1) collected immediately before steps 8(a) that are
followed by a grid refinement. Let {Dk}∞k=1, {�k}∞k=1, and {Gk}∞k=1 denote the corresponding
sequences of orthogonal bases, grid scaling vectors, and grids.

Theorem 3.2. Suppose that there exists a compact setC such that {x : f (x) ≤ f (xm)} ⊆ C
and that f (x) is C1. If ‖�k‖ → 0 and 1 < λ ≤ 
 then ‖∇ f (xk)‖ → 0.

Proof: Obviously requirements 1, 2, and 3 of Lemma 2.8 hold.
To show that requirement 4 of Lemma 2.8 holds, we construct a sequence of maximal or-

thogonal positive bases {A+
k }∞k=1 from sequence {Dk}∞k=1 whereA+

k = {d1
k , d2

k , . . . , dn
k ,−d1

k ,
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−d2
k , . . . ,−dn

k }. Since Dk is orthogonal, ε0(Ak) = n−1/2. Now create a sequence {B+
k }∞k=1

by restraining members of A+
k to Gk and then scaling them with 2

n1/2‖�k‖ . Since Gk is an
orthogonal grid the restrainment error δ is bound from above by δ0 = ‖�k‖/2. Taking into
account the restrictions in step 3 of Algorithm 2

λ
n1/2‖�k‖

2
≤ ‖di

k‖ ≤ 

n1/2‖�k‖

2
∀k, i : k > 0, i = 1, 2, . . . , n

After the grid restrainment of A+
k we have

max

(

0, λ
n1/2‖�k‖

2
− δ0

)

≤ ∥
∥R

(
G,±di

k

)∥
∥ ≤ 


n1/2‖�k‖
2

+ δ0

∀k, i : k > 0, i = 1, 2, . . . , n

Finally after scaling

max(0, λ − n−1/2) ≤ ‖bi
k‖ ≤ 
 + n−1/2 ∀k, i : k > 0, i = 1, 2, . . . , 2n (3.2)

Taking into account λ > 1 and (3.2) it follows that members of {B+
k }∞k=1 satisfy (2.5) and

(2.6). B+
k is obtained with grid restrainment of A+

k , so we have (see lemma 2)

ε0
(
B+

k

) ≥ ε0
(
A+

k

) − δ0/‖dmin‖
1 + δ0/‖dmin‖ ≥ n−1/2 1 − λ−1

1 + λ−1n−1/2
(3.3)

Due to λ > 1 and (3.3) it follows that (2.7) is satisfied by every member of {B+
k }∞k=1.

Algorithm 2 requires no sufficient descent so we can set o(x) = 0 in (2.14). By choosing
ξk = n1/2‖�k‖

2 we satisfy (2.15). xk + ξkbi
k for i = 1, 2, . . . , 2n represent the 2n grid-

restrained points examined around xk in steps 3 and 8c of Algorithm 2. These points failed
to produce descent. So (2.14) holds, fulfilling requirement 5 of Lemma 2.8 and resulting in
‖∇ f (xk)‖ → 0. �

4. Implementation

Algorithm 2 was implemented in MATLAB R12 and tested on an AMD ATHLON 2100XP
computer. Following values were chosen for the simplex scaling coefficients: γr = 1,
γe = 1.2, γoc = 0.5, γic = −0.5, and γs = 0.25. Note that the value of γs is the same as
the value of κ in [12] and has the same role in GRNMA as in SDNMA. γe also differs from
the value used in [11] and [12] (where γe = 2). A more detailed explanation can be found
in the section dealing with the numerical testing of GRNMA.

The initial simplex is constructed around the initial point x0 (x1 = x0). Further n points
are obtained by perturbing one of the n coordinates of x0 by 5% or 0.00025 if the respective
coordinate value is zero. The initial grid origin is set to x0. Initial grid spacing is chosen
to be �1 = �2 = · · · = �n = 1

10 mini=1,2,...,n ‖xi+1 − x1‖. The initial simplex is not
restrained to the grid.
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Whenever an iteration of the NM algorithm fails step 3 checks the shape of the simplex.
For that purpose the side vectors vi are ordered so that ‖v1‖ ≥ ‖v2‖ ≥ · · · ≥ ‖vn‖ and
a matrix V = [v1, v2, . . . , vn] is constructed. V is then factored using QR decomposition
in orthogonal matrix Q = [q1, q2, . . . , qn] and upper triangular matrix R. Since det V =
det R = ∏n

i=1 Rii , a lower bound on | det V | can be imposed by monitoring the diagonal

elements of R. A reshape is performed if mini=1,2,...,n |Rii | ≥ ψ
n1/2‖�‖

2 (where ψ is a
constant) is violated.

Simplex reshaping constructs an orthogonal basis D = {d1, d2, . . . , dn} from columns
of Q.

di = sign(Rii ) max

(

λ
n1/2‖�‖

2
, min

(

|Rii |,
n1/2‖�‖
2

))

qi

sign(Rii ) =
{

1 Rii ≥ 0

−1 Rii < 0

The following values were used in the implementation: ψ = 10−6, λ = 2, and 
 = 252.
As the simplex is shrinking, the grid must be refined. Let zi , �i , znew, �new,i , and dmin,i

be the components of z, �, znew, �new, and dmin respectively. Then components of �new are
expressed as �new,i = min(max( |dmin,i |

250λn ,
‖dmin‖

250λn3/2 ),�i ). New grid origin is set to znew = x1.

Since |dmin,i | ≤ ‖dmin‖, we can write �new,i ≤ ‖dmin‖
250λn . Due to the requirement ‖dmin‖ <

λ
n1/2‖�‖

2 that must be fulfilled in order for the grid refinement to take place, we have
�new,i <

‖�‖
500n1/2 . Finally we can conclude that ‖�new‖ <

‖�‖
500 . This guarantees ‖�‖ → 0

required by Theorem 3.2.
Due to finite precision of floating point numbers (for 64-bit IEEE representation relative

precision is τr = 2−52 and absolute precision is τa = 10−323) the allowed grid spacing
‖�‖ is limited. To prevent �i from going below machine precision, an additional lower
bound max(τr znew,i , τa) is enforced. So in step 8(b) of Algorithm 2 we actually have
�i = max(�new,i , τr znew,i , τa) for all i = 1, 2, . . . , n. In order to leave margin for division
τa = 10−100 is used.

The simplex is ordered before the stopping condition is checked. Let vi, j and x1, j

denote the j-th component of vi and x1. The following stopping condition was used
maxi=2,3,...,n+1 | f i − f 1| < max(β f , βr | f 1|) and maxi=1,2,...,n |vi, j | < max(βx , βr |x1, j |)
for j = 1, 2, . . . , n. The following values of coefficients were used: βr = 10−15, βx = 10−8,
and β f = 10−15.

5. Results of numerical testing

The algorithm was tested on the Moré-Garbow-Hillstrom set of test problems [10]. The
starting simplex was chosen in the same manner as in [12]. Additionally the standard
quadratic function and the McKinnon function were tested. For the McKinnon function
two runs were performed, one with the standard starting simplex, and one with the starting
simplex proposed by McKinnon (marked with alt) that causes failure of the original NM
algorithm. The results are summarized in Table 1.



GRID RESTRAINED NELDER-MEAD ALGORITHM

Table 1. Performance of SDNMA and GRNMA on a set of test functions. MS denotes the percentage of CF
evaluations caused by non-NM steps. For GRNMA Q R and Q R f denote the total number of QR decompositions
and the number of QR decompositions where the result is not used for reshaping the simplex. The last column
(Ns ) contains the number of reshapes due to bad simplex shape.

SDNMA GRNMA

Function n NF Minimum NF Minimum MS (%) Q R/Q R f Ns

Rosenbrock 2 285 1.39058e−17 517 1.79285e−17 9.5 7/ 1 2

Freudenstein and Roth 2 217 48.9843 274 48.9843 18.2 6/ 0 1

Powell badly scaled 2 969 4.23980e−25 1245 1.87891e−25 3.7 8/ 2 1

Brown badly scaled 2 498 7.99797e−17 595 4.45581e−17 19.8 10/ 1 1

Beale 2 191 2.07825e−18 183 1.13556e−18 9.8 2/ 0 0

Jennrich and Sampson 2 157 124.362 149 124.362 16.1 4/ 0 0

McKinnon 2 426 −0.250000 380 −0.250000 27.6 37/ 26 0

McKinnon (alt) 2 351 −0.250000 210 −0.250000 35.2 14/ 6 0

Helical valley 3 342 9.83210e−16 591 1.64083e−16 8.1 6/ 0 3

Bard 3 1134 17.4287 427 8.21488e−3 7.7 3/ 0 1

Gaussian 3 194 1.12793e−8 252 1.12793e−8 20.2 9/ 4 1

Meyer 3 2801 87.9459 7269 87.9459 7.7 207/176 13

Gulf research 3 529 5.44511e−19 955 2.92451e−21 4.6 5/ 1 0

Box 3 478 8.70459e−21 923 1.91130e−20 3.1 5/ 1 1

Powell singular 4 1045 6.73509e−26 1280 3.43198e−25 8.9 14/ 5 1

Wood 4 656 2.57400e−16 1177 2.50092e−17 4.6 6/ 1 0

Kowalik and Osborne 4 653 3.07506e−4 566 3.07506e−4 12.4 6/ 2 0

Brown and Dennis 4 603 85822.2 620 85822.2 18.4 10/ 1 1

Quadratic 4 440 2.15350e−17 427 2.82657e−17 6.1 2/ 0 0

Penalty (1) 4 1848 2.24998e−5 1596 2.24998e−5 4.0 4/ 0 0

Penalty (2) 4 4689 9.37629e−6 2274 9.37629e−6 3.8 7/ 0 1

Osborne (1) 5 1488 5.46489e−5 1766 5.46489e−5 6.0 6/ 0 0

Brown almost linear 5 648 1.08728e−18 769 4.03372e−18 6.2 3/ 0 0

Biggs EXP6 6 4390 1.16131e−20 2877 1.12896e−20 3.3 11/ 5 0

Extended Rosenbrock 6 3110 1.35844e−14 2345 9.06455e−18 2.2 3/ 0 0

Brown almost linear 7 1539 1.51163e−17 1473 4.83079e−18 3.0 2/ 0 0

Quadratic 8 1002 8.07477e−17 1124 1.96893e−16 5.2 2/ 0 2

Extended Rosenbrock 8 5314 3.27909e−17 2996 1.50285e−17 3.1 4/ 0 0

Variably dimensional 8 2563 1.24784e−15 2634 7.66228e−16 2.6 4/ 0 0

Extended Powell 8 7200 6.43822e−24 7014 1.63762e−25 1.9 10/ 3 0

Watson 9 5256 1.39976e−6 5394 1.39976e−6 4.3 9/ 1 0

Extended Rosenbrock 10 7629 2.22125e−16 6208 1.77981e−17 1.3 3/ 0 0

Penalty (1) 10 9200 7.08765e−5 11514 7.08765e−5 1.6 6/ 0 0

Penalty (2) 10 32768 2.93661e−4 31206 2.93661e−4 0.8 19/ 7 2

Trigonometric 10 2466 2.79506e−5 1521 1.49481e−16 5.4 2/ 0 1

Osborne (2) 11 6416 0.0401377 3263 0.0401377 3.8 4/ 0 0

Extended Powell 12 20076 1.11105e−20 12846 5.51619e−28 0.9 3/ 0 1

Quadratic 16 2352 1.41547e−16 3639 4.70425e−16 3.1 2/ 0 0

Quadratic 24 4766 1.21730e−15 6067 4.06413e−16 2.8 2/ 0 0
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A total of 39 test functions with dimension ranging from 2 to 24 were minimized. In all
cases GRNMA found a stationary point of the CF. The results were compared to the results
of the sufficient descent based algorithm proposed by Price, Coope, and Byatt (SDNMA).

Out of 39 test problem GRNMA found the same CF value on 15 problems and a better
CF value on 17 problems. Upon examining the results for the remaining 7 problems, the
coordinates of the point obtained by GRNMA agreed with the known function minimum
in at least 6 significant digits. If we consider the number of CF evaluations GRNMA
outperformed SDNMA (required less CF evaluations) on 19 test problems. In two out of
these 19 problems (Bard 3D and trigonometric 10D function) GRNMA found a better
minimum than SDNMA so the number of iterations is not comparable. On the other hand
SDNMA found a better CF value than GRNMA on 7 test problems and required less CF
evaluations on 20 test problems.

GRNMA produced the same or a better final CF value with fewer CF evaluations than
SDNMA on 16 test problems (not counting the two problems which are not comparable
due to different minima found by both algorithms). SDNMA produced the same or better
final CF value with fewer CF evaluations than GRNMA on 13 test problems.

The quadratic functions exhibit a somewhat slower convergence with GRNMA than with
SDNMA. On the other hand the number of GRNMA CF evaluations is still acceptable if
we consider the fact that constructing a quadratic approximation of the n-dimensional CF
takes O(n2) function evaluations. Such an approach yields an exact solution for quadratic
functions after a finite number of CF evaluations. GRNMA obtained a solution with co-
ordinate values matching 7 significant digits of the function’s minimum. The quotient of
the number of iterations needed for obtaining this result and n2 gradually decreases with
increasing n.

The percentage of function evaluations caused by non-NM steps in GRNMA is higher
for functions with n ≤ 5. For functions with n > 5 this value is around 6% or even less.
The total percentage of non-NM steps across the whole test suite is 3.1%, meaning that
NM steps are executed most of the time.

A QR decomposition is performed whenever the NM algorithm fails to produce descent.
In such case the simplex shape is checked by evaluating the determinant of R. This check
is often followed by a reshape (either in step 3 or step 8a) where the information obtained
from the QR decomposition is used. If however no reshape happens, the QR decomposition
is used solely for evaluating the determinant. SDNMA requires no decomposition for
evaluating the determinant so in such a case GRNMA is in a somewhat worse position than
SDNMA. The QR decomposition is however necessary due to the fact that grid restrainment
makes it impossible to use SDNMA’s incremental procedure for evaluating the determinant.

The total number of QR decompositions in GRNMA on the proposed set of test problems
is 467 (this is also the number of pseudo-expand steps). 243 QR decompositions are not
followed by a reshape. This and the fact that a QR decomposition happens only in 0.37%
of all CF evaluations (126566) justifies the choice of QR decomposition for simplex shape
monitoring. A total of 33 reshapes (last column of Table 1) happened in step 3 (these
reshapes are caused by bad simplex shape).

Finally let us note that GRNMA uses γe = 1.2 and γs = 0.25 whereas the original
NM algorithm uses γe = 2 and γs = 0.5. The comparison of the GRNMA using the
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Table 2. Performance of GRNMA for the original Nelder-Mead values γe = 2, γs = 0.5 and for the values used
to obtain the GRNMA results in Table 1 (γe = 1.2, γs = 0.2). E and E f denote the total number of expansion
steps and the number of failed expansion steps.

GRNMA, original NM GRNMA in Table 1

Function n NF Minimum E/E f NF Minimum E/E f

Rosenbrock 2 390 1.07374e−17 56/25 517 1.79285e−17 151/86

Freudenstein and Roth 2 282 48.9843 35/15 274 48.9843 58/8

Powell badly scaled 2 1069 4.33716e−25 237/112 1245 1.87891e−25 401/119

Brown badly scaled 2 657 2.22190e−12 87/46 595 4.45581e−17 139/9

Beale 2 204 8.379224e−18 20/10 183 1.13556e−18 28/7

Jennrich and Sampson 2 163 124.3622 14/6 149 124.362 16/7

McKinnon 2 524 −0.250000 35/19 380 −0.250000 63/8

McKinnon (alt) 2 216 −0.250000 7/6 210 −0.250000 23/7

Helical valley 3 342 0.000000 50/14 591 1.64083e−16 133/54

Bard 3 390 0.00821488 40/11 427 0.00821488 86/11

Gaussian 3 207 1.12793e−8 19/16 252 1.12793e−8 30/11

Meyer 3 3656 87.9459 719/311 7269 87.9459 2064/466

Gulf research 3 666 1.27931e−22 94/32 955 2.92451e−21 262/43

Box 3 100008 7.57183e−4 6/1 923 1.91130e−20 256/52

Powell singular 4 1156 5.25964e−27 177/76 1280 3.43198e−25 291/42

Wood 4 876 1.83011e−17 152/79 1177 2.50092e−17 281/122

Kowalik and Osborne 4 712 3.07506e−4 98/42 566 3.07506e−4 116/30

Brown and Dennis 4 607 85822.2 75/32 620 85822.2 114/24

Quadratic 4 324 0.000000 26/11 427 2.82657e−17 66/25

Penalty (1) 4 2931 2.24998e−5 584/231 1596 2.24998e−5 443/83

Penalty (2) 4 3784 9.37629e−6 866/431 2274 9.37629e−6 644/92

Osborne (1) 5 1179 5.46490e−5 183/98 1766 5.46489e−5 426/98

Brown almost linear 5 710 1.09649e−17 96/53 769 4.03372e−18 135/43

Biggs EXP6 6 3878 1.21407e−19 711/317 2877 1.12896e−20 708/165

Extended Rosenbrock 6 1806 4.24663e−17 314/182 2345 9.06455e−18 540/152

Brown almost linear 7 1436 4.79774e−17 200/115 1473 4.83079e−18 283/103

Quadratic 8 1046 1.83990e−16 98/65 1124 1.96893e−16 163/74

Extended Rosenbrock 8 5110 3.82635e−16 906/527 2996 1.50285e−17 597/206

Variably dimensional 8 3579 7.69947e−16 608/297 2634 7.66228e−16 596/110

Extended Powell 8 4452 3.40101e−21 722/354 7014 1.63762e−25 1703/394

Watson 9 6470 1.39976e−6 1087/540 5394 1.39976e−6 1347/120

Extended Rosenbrock 10 11791 5.21129e−16 2006/1130 6208 1.77981e−17 1304/412

Penalty (1) 10 14256 7.08765e−5 2412/1278 11514 7.08765e−5 2680/582

Penalty (2) 10 35113 2.93661e−4 5426/2440 31206 2.93661e−4 7218/1355

Trigonometric 10 2344 4.47357e−7 317/241 1521 1.49481e−16 226/123

Osborne (2) 11 4323 0.0401377 646/485 3263 0.0401377 524/244

Extended Powell 12 21965 2.28441e−27 3709/2299 12846 5.51619e−28 2855/679

Quadratic 16 5389 6.35333e−17 626/475 3639 4.70425e−16 480/250

Quadratic 24 8454 1.25183e−15 867/697 6067 4.06413e−16 707/374
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original NM values and the GRNMA presented here is in Table 2. The version with γe = 2
produced a better CF value on 8 test functions, the same CF value on 16 test functions, and
it required less CF evaluations on 17 test functions. Note however that for the trigonometric
10D function the two versions are not comparable since they don’t finish at the same local
minimum. For the box 3D function the algorithm failed to converge to a local minimizer in
100000 CF evaluations, upon which it was stopped.

On the other hand the version using γe = 1.2 (also compared to SDNMA in Table 1)
found a better CF value on 15 test problems, and it required less CF evaluations on 21
test problems (not counting the trigonometric 10D function). It ‘won’ (produced the same
or better CF value in less iterations than its counterpart) on 20 test problems (again not
counting the trigonometric 10D function), whereas the algorithm with the original value
γe = 2 ‘won’ only on 12 problems. Therefore we conclude that on the set of test problems
the modified values of γe and γs improve the performance of GRNMA with respect to the
version using the original NM values. This is probably due to the fact that the percentage
of failed expansion steps is smaller when γe = 1.2 is used (24% for γe = 1.2 compared
to 54% for γe = 2). Expansion steps are the only ones that increase the simplex size
(beside pseudo-expand steps and some reshape steps, both rather scarce in the process of
optimization according to Table 1).

6. Conclusion

The grid-restrained Nelder-Mead algorithm (GRNMA) was presented. A proof for its
convergence to a stationary point of C1 cost functions was provided. GRNMA achieves
convergence by restraining the examined points to a grid which is then gradually refined.
The consequence of grid restrainment is that the algorithm requires only simple descent for
converging to a stationary point. This is completely in the spirit of the original Nelder-Mead
algorithm, where only the relative ordering of CF values matters.

Within the Moré-Garbow-Hillstrom test suite GRNMA exhibits similar performance as
the sufficient descent Nelder-Mead algorithm (SDNMA). GRNMA performance was also
tested with the standard NM expansion (γe) and shrink (γs) coefficient values. The obtained
results are better if nonstandard values are used for γe and γs . This is probably due to the
fact that more expansion steps get accepted.

GRNMA is yet another convergent modification of the well known, but provably not
convergent original Nelder-Mead algorithm. Hopefully GRNMA and its convergent rel-
atives (e.g. [16] and [12]) will help in shifting the scientific and engineering community
away from using the unreliable original Nelder-Mead algorithm.
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