

BULLSEYE Manual
Front-end Design Management

Simshelf International LLC

November 2009

BULLSEYE Manual
Front-end Design Management

2

BULLSEYE Manual
Front-end Design Management

3

I. Design flow in Bullseye...5

II. Installation...7

1. Installing the HSPICE simulator..7

2. Installing Python..7

3. Installing Bullseye..8

I. The Bullseye window...10

II. Preparing the circuit’s netlist ...11

III. Defining building block (cell) properties ...14

IV. Optimization parameters (circuit under test) ...15

V. Operating region constraints ..16

VI. Test bench setup ..18

1. Variables...18

2. Save directives..18

3. Simulation setup...19

4. Measurements ..22

5. Model declaration ..35

6. Corner declaration...36

IX. Optimizer settings ..37

X. Graphic output setup...40

1. Graph list..40

2. Trace styles ...41

3. Trace list ...42

XI. Starting a run ..43

XII. Inspecting the results (results browser)..43

BULLSEYE Manual
Front-end Design Management

4

BULLSEYE Manual
Front-end Design Management

5

I. Design flow in Bullseye
Bullseye front-end design management enables you to control your simulations from a simple graphical
user interface. After defining the circuit, the design variables, the corners, the simulations, and the
measurements you can quickly re-simulate your circuit with changed design variables and rapidly
evaluate the impact the change has on the circuit’s performance. Adding a corner is simple in Bullseye.
Just specify the library and the design parameter values that correspond to the corner and you are ready to
re-simulate. Your simulation results can be displayed both numerically and graphically. Bullseye also
provides optimization capabilities that can increase your productivity.

HSPICE

Waveform
display

Bullseye

Python

results.txt
log.txt*.cir

*.dump

sim*.ac#
sim*.sw#
sim*.tr#

sim*.sp
sim*analysis.lib

sim*topology.lib

User

Figure 1: Design flow in Bullseye.

BULLSEYE Manual
Front-end Design Management

6

BULLSEYE Manual
Front-end Design Management

7

II. Installation

1. Installing the HSPICE simulator
You will need a working HSPICE installation. Refer to HSPICE documentation for details. Set the
HSPICE_BINARY environmental variable to the full path to the HSPICE simulator executable.

In Windows XP the variable can be set by adding it to “System Variables” under “Control
Panel/System/Advanced”. If HSPICE is installed in c:\synopsys\Hspice_Z-2007.03\BIN as hspice.exe the
variable should be set to

c:/synopsys/Hspice_Z-2007.03/BIN/hspice.exe

Note that slashes are used instead of backslashes.

In Linux the variable can be added by editing /etc/profile (if you are using BASH as your shell). Suppose
HSPICE is installed in /home/public-software/hspice/linux as hspice. The following two lines must be
added to /etc/profile

HSPICE_BINARY=/home/public-software/hspice/linux/hspice
export HSPICE_BINARY

Note that if you don’t set the HSPICE_BINARY variable the hspice executable must be named hspice
under Linux or hspice.exe under Windows and it must be accessible via the system path.

2. Installing Python
For using the Windows version of Bullseye with Python 2.5 the following Python packages must be
installed in c:\python25:

python-2.5.1.msi
multiprocessing-2.6.0.2.win32-py2.5.exe
wxPython2.8-win32-unicode-2.8.9.1-py25.exe
numpy-1.2.1-win32-superpack-python2.5.exe
scipy-0.7.0b1-win32-superpack-python2.5.exe
matplotlib-0.98.3.win32-py2.5.exe

The Python binary must be accessible via the system path (add c:\python25 to the PATH system
environmental variable).

Unpack cirsimlib.zip to c:\. This results in a directory named c:\cirsimlib. Create a new system
environmental variable PYTHONPATH with value set to c:\cirsimlib. If PYTHONPATH variable already
exists add a semicolon (;) and c:\cirsimlib to the current value of the PYTHONPATH variable.

For using the Debian Linux version install the following Python packages

python

BULLSEYE Manual
Front-end Design Management

8

python-wxgtk2.6
python-numpy
python-scipy
python-matplotlib

If you are using Python 2.5 you will need the backport of the multiprocessing module for python 2.6.
Unpack multiprocessing-2.6.0.2.tar.gz and follow the instructions in INSTALL.txt. If you are using
Python 2.6 you don’t need to install the backport of the multiprocessing module.

Unpack cirsimlib.tar.gz to whatever directory you like (let’s assume you unzipped it to
/home/public_software which resulted in a new directory named /home/public_software/cirsimlib). Add
the following environmental variable to /etc/profile (if you are using BASH as your shell):

PYTHONPATH=/home/public-software/cirsimlib
export PYTHONPATH

3. Installing Bullseye
Under Windows unzip bullseye.zip to c:\. This will create the c:\bullseye directory. Add new system
environmental variables named BULLSEYEHOME with value set to c:\bullseye. Copy the lock file to
c:\bullseye\lib. The Bullseye executable binary is located in c:\bullseye\bin. It is named bullseye.exe. Start
it with the –h command line option to invoke the HSPICE mode by typing

C:\bullseye\bin\bullseye.exe –h

in the command prompt or the “Run…” dialog invoked from the Start menu. It is good practice if you
also add c:\bullseye\bin to the system path. This way you can start Bullseye without specifying the full
path to it by simply typing

bullseye -h

in the command prompt or the “Run…” dialog invoked from the Start menu.

Under Linux unzip bullseye.tar.gz to whatever directory you like (let’s assume you unzipped it to
/home/public_software which resulted in a new directory /home/public_software/bullseye). Copy the lock
file to /home/public-software/bullseye/lib/bullseye. Add the following environmental variable to
/etc/profile (if you are using BASH as your shell):

BULLSEYEHOME=/home/public-software/bullseye
export BULLSEYEHOME

To start Bullseye type

/home/public-software/bullseye/bin/bullseye –h

BULLSEYE Manual
Front-end Design Management

9

in the shell. You can add /home/public-software/bullseye/bin to the system path. This way Bullseye can
be started by typing

bullseye –h

in the shell.

BULLSEYE Manual
Front-end Design Management

10

I. The Bullseye window
Bullseye window comprises three panes. The left pane (settings group selector pane) lists the various
groups of session settings. The actual settings are entered in the right pane (settings pane). The right pane
is divided in two sub panes. Their meaning depends on the settings that are being entered and will be
explained in the upcoming sections. The messages resulting from Bullseye’s actions are printed in the
bottom pane (message pane).

Figure 2: Bullseye window.

Most of the Bullseye’s input is in the form of tables. A row is deleted from a table by pressing CTRL+D.
A new row is added by pressing CTRL+Enter. A new column can be added or deleted by pressing
CTRL+N or CTRL+M, respectively. The contents of a cell can be edited by clicking on the cell and
typing. A row can be moved up/down by pressing CTRL+Cursor_up/CTRL+cursor_down.

Rows, columns, and cells can be disabled. A disabled row/column/cell behaves as if it did not exist. A
row can be disabled/reenabled by pressing F5. A column’s enable state is toggled by pressing F6. A cell
can be disabled or enabled by pressing F7. A disabled row/column/cell appears grayed out and cannot be
edited.

All these operations can be accessed through using a mouse by right-clicking on a cell and selecting an
option from the popup menu.

BULLSEYE Manual
Front-end Design Management

11

II. Preparing the circuit’s netlist
The netlist syntax adheres mostly to HSPICE rules. The exceptions will be explained in this chapter. The
netlist must comprise the definition of the circuit subject to optimization which is also referred to as the
circuit under test (CUT). The CUT must be defined as one or more subcircuits (.subckt/.ends) blocks. No
libraries that change from corner to corner may be included in the netlist with .include or .lib statements.

Figure 3: Entering the netlist.

For simulation purposes the CUT must be instantiated in a testbench circuit. Multiple test bench circuits
can be defined. To define a test bench circuit you must place it in a .netclass/.endn block using the
following syntax:

.netclass testbench <topology_name>
<topology description>
.endn

Elements in a test bench circuit can be parameterized. All parameters used by elements of a test bench
circuit must be defined with .param statements in the .netclass/.endn block. Parameterized expressions
used for setting instance parameters must be enclosed in curly braces (e.g. {rin*10}) instead of single
quotes (e.g. ‘rin*10’). Parameterized expressions on .param lines must not be enclosed in any quotes or
braces. Only a single parameter can be defined by one .param line.

The circuit in Figure 4 will be used as the CUT throughout this manual. Figure 5 depicts a test bench
circuit used for evaluating the CUT.

BULLSEYE Manual
Front-end Design Management

12

Vdd

Vss

inn

bias
out

C1

R1

Mn2 Mn1

inp

1

Mn4Mn3

Mn5

3

2

Mp1Mp2
Mp3

4

Figure 4: Amplifier schematic. Internal nodes are denoted by numbers.

All MOS transistor bulks are connected to Vdd (PMOS) or Vss (NMOS).

+

-

inp

inn bias

vss

vdd

out

inn

inp

out

vdd

bias

in

Vdd

Ibias

Vin

Vcom

Rin

Rfb

Rload Cload

Xamp

com
Rinp

Figure 5: Test bench circuit.

Now let’s write down the netlist for the example.

Amplifier
.subckt amp inp inn out vdd vss bias
mp1 2 3 vdd vdd pmosmod w=61.9u l=0.5u
mp2 3 3 vdd vdd pmosmod w=61.9u l=0.5u
mp3 out 2 vdd vdd pmosmod w=61.9u l=0.5u m=16
mn1 2 inp 1 vss nmosmod w=157u l=0.5u
mn2 3 inn 1 vss nmosmod w=157u l=0.5u
mn3 bias bias vss vss nmosmod w=118.2u l=1.9u

BULLSEYE Manual
Front-end Design Management

13

mn4 1 bias vss vss nmosmod w=118.2u l=1.9u
mn5 out bias vss vss nmosmod w=118.2u l=1.9u m=8
c1 2 4 c=0.1p
r1 4 out r=100
.ends

.netclass testbench sch1

.param vcc=3.0
.param vcom=1.5
.param ibias=10u
.param vinput=0
.param vinac=1
.param rinput=1meg
.param rfeedback=1meg
.param rload=10meg
.param cload=2p

x1 inp inn out vdd 0 bias amp

vdd vdd 0 dc={vcc}
ibias vdd bias dc={ibias}
vcom com 0 dc={vcom}
rinp com inp r=20u
rin in inn r={rinput}
rfb inn out r={rfeedback}
vin in com dc={vinput} ac={vinac}
rload out 0 r={rload}
cload out 0 c={cload}

.endn

.end

As you can see the CUT is not parameterized in the netlist. The name of the NMOS/PMOS model is
nmosmod/pmosmod. Parameterization is done by Bullseye. Also the library with the MOS models is not
included because it changes from corner to corner. There is only one test bench circuit named sch1. The
test bench circuit is parameterized and the parameters are defined in the .netclass/.endn block. When the
problem is exported and run Bullseye parameterizes the CUT, processes .netclass/.endn blocks, and
inserts .lib statements for the inclusion of MOS models.

BULLSEYE Manual
Front-end Design Management

14

III. Defining building block (cell) properties
Every CUT consists of building blocks (cells). Basic cell properties required by the optimization process
are entered in the Cell Defaults settings group. Every cell has a name. In our example we have four types
of cells: nmos (cell name nmosmod), pmos (cell name pmosmod), resistor (cell name res), and capacitor
(cell name cap).

The elt. Inst. field is required only if a cell is defined as a subcircuit in which case it specifies the name of
the instance in the subcircuit that represents the actual device (e.g. MOS transistor). This field is required
only if you intend to put any operating point requirements on MOS transistor cells that are defined as
subcircuits.

Figure 6: Cell defaults.

Every cell can have up to 3 parameters that can be subject to optimization. Typically for MOS transistors
these are channel width, channel length, and multiplier. If a cell has less than 3 parameters describe only
those that are available and leave the rest of the cell defaults empty.

For every parameter its name must be specified. For the sake of optimization the minimal and the
maximal allowed value of a parameter must also be specified. Step specifies the size of increment used for
modifying the parameter. For MOS cells you can also specify the default operating point requirements for
minimal Vgs-Vt and Vds-Vdsat at the operating point of the circuit.

Every cell contributes to circuit area. The area contribution is calculated according to the formula
specified in the Area column. The formula may not use Si prefixes for numeric values (e.g. use 1e-6
instead of 1u). Parameters of a cell can be entered into the formula by using p1, p2, and p3.

The cell defaults for the example circuit are depicted by Figure 6.

BULLSEYE Manual
Front-end Design Management

15

IV. Optimization parameters (circuit under test)
The cell instances that are subject to optimization must be specified in the Circuit Under Test settings
group. Every cell instance has a parent name (e.g. the name of the subcircuit definition where the cell
instance is defined). In our example this name is amp for all cell instances.

The cell type is the name of the cell type. This name links a row in the CUT definition table with a
corresponding line in the Cell Defaults table. Finally every cell instance has an instance name which is the
name used for instantiating the cell in the netlist.

For every one of the 3 available optimization parameters one can specify overrides for the minimal value,
maximal value, and the step used by the optimizer. If these fields are left empty the defaults from the Cell
Default table are used. Seed specifies the initial value of the parameter. The result column displays the
result of the active iteration (the one that is highlighted in the Results Browser). The results relative
position to the minimal and maximal value is indicated by a bar in the result cell.

The En. Column enables or disables the optimization of a parameter (yes stands for enable). If a
parameter is disabled, its value is equal to the value specified in the Seed column and is untouched by the
optimizer. Note that the values of the parameters specified in the netlist are ignored.

The group column specifies the name of the group to which this parameter belongs. Parameters in the
same group have identical values and are modified by the optimizer in a parallel way (one can also say
that these parameters are matched). Finally the Expression column enables you to specify an expression
for a parameter. An expression allows for more flexible ways of matching one parameter with another.
Expressions can be of the form a*x+b where a and b are constants and x is an identifier. Expressions
override the Group setting.

BULLSEYE Manual
Front-end Design Management

16

Figure 7: Defining the circuit under test (CUT).

The En. Through Results columns are repeated for the remaining two parameters of every cell. If a cell
has less than 3 parameters some columns may be disabled.
The Group setting is valid for matching only between the same parameters of the same column (e.g. width
of one MOS to the width of another MOS). The Expression makes it possible to match between columns
(e.g. you can match width of one MOS to the length of the same MOS or even the length of a different
MOS). The identifier in an expression has nothing to do with the name of a group. You can have the same
name for a first parameter group and for an identifier (say A) without a resulting matching between the
first parameter of cells that belong to first parameter group A and the cells with an expression containing
identifier A.

V. Operating region constraints
You can specify constraints on the operating point of the circuit, specifically on the differences Vgs-Vt
and Vds-Vdsat. The column Parent Instance specifies the name of the instance in the test bench circuit
where the specific MOS resides that is the subject of a constraint on Vgs-Vt and Vds-Vdsat. Cell type
specifies the name of the corresponding definition in the Cell Defaults table. Instance Name specifies the
name of the actual cell instance on which the constraint is enforced.

BULLSEYE Manual
Front-end Design Management

17

Figure 8: Operating region constraints.

Columns Cond1 and Cond2 specify the minimal value of Vgs-Vt and Vds-Vdsat. If no value is specified
for Cond1 or Cond2 the value is taken from the Cell Defaults table. Any of the Cond1 and Cond2 cells
can be disabled (F8). If a cell is disabled the corresponding operating point constraint is not enforced. A
disabled cell can be enabled by pressing F8.

The operating point constraints are enforced on the operating point results obtained by the analysis with
the name “op” (see section Simulation setupVI.3).

The right sub pane of the settings pane lists the value of Vgs-Vt and Vds-Vdsat for all corners of the
active iteration (the one that is highlighted in the Results Browser). Green fields denote an operating
condition that satisfies the requirements while red fields denote a failure to satisfy the requirements.

BULLSEYE Manual
Front-end Design Management

18

VI. Test bench setup

1. Variables
The Netlist Variable Declaration settings group enables you to specify the values of the variables (the
ones defined with .param statements in test bench circuit definitions). All variables defined in all test
bench circuit definitions are listed in the table. By clicking on the cells of the Depends On column you
can select whether a variable will behave as a constant (constant), change its value depending on the
corner (corner), or change its value depending on the analysis (analysis) that is being performed.

Figure 9: Defining variables.

For constant variables the value can be specified in the Constant Value column. All variables must have a
value defined on the Constant Value column. The value specified in the .param statement is ignored by
and the one specified in Netlist Variable Declaration is used.

The values of variables that depend on the corner or on the analysis are specified in the Simulation Setup
(see section VI.3) or in Corner Declaration (see section VI.6).

2. Save directives
The simulator by default saves node voltages and currents of voltage sources as simulation results. If you
want to narrow down the number of saves vectors (and by that speed up the process of optimization) you
can specify what results you want to save during the analysis. In the Save Directives table every column
specifies one group of save directives. Columns can be added by pressing CTRL+N and deleted by

BULLSEYE Manual
Front-end Design Management

19

pressing CTRL+M. The first row in a column specifies the name of the group of save directives. The
remaining rows specify the save directives, one per line.

Later in the Simulation Setup settings group you can specify one or more groups of save directives for
every analysis.
Save directives can be:

 a node voltage – specified as v([‘node_name’])
 instance current – specified as i([‘device_name’])
 instance property – specified as p([‘instance_name’], [‘property_name’])

Figure 10: Save directives.

Empty cells in Save Directives produce no save directives for the simulator. Save directives are ignored in
AC analysis because of the way they are processed by HSPICE (using the .probe statement). In AC
analysis all node voltages and all voltage source currents are always saved, regardless of save directives.

3. Simulation setup
In the simulation setup you can define the analyses that will be performed on your test bench circuits.

BULLSEYE Manual
Front-end Design Management

20

Figure 11: Simulation setup.

Column Name specifies the name of the analysis. Save specifies a space separated list of save directive
group names (see section VI.2). The topology that is used for the analysis (the test bench circuit) is
specified by listing its name in the Schematic (Netclass) column. Analyses are defined in the Analysis
column using one of the following statements.

 op() – operating point analysis
 dc(start, stop, step_type, nsteps, instance, parameter) – operating point sweep
 ac(fstart, fstop, step_type, npoints) – small signal AC analysis
 tran(tstep, tstop, tstart, maxStep, uic_flag) – transient analysis
 noise(fstart, fstop, step_type, npoints, input_instance, positive_output, negative_output) –

noise analysis

In dc() analysis start and stop specify the initial and the final point of the sweep while step_type can be
‘lin’ (linear sweep with npoints points), ‘dec’ (logarithmic sweep with npoints points per decade), or ‘oct’
(logarithmic sweep with npoints points per octave). Instance and parameter define the name of the
instance and its parameter that is swept. To sweep the temperature set the last two parameters to None and
temperature, respectively.

In ac() analysis the range of the frequency sweep is defined with fstart and fstop while step_type and
nsteps have the same meaning as in dc() analysis.

In tran() analysis the first two parameters (tstep and tstop) specify the initial step and the duration of the
analsyis. Both of them are mandatory while the others are optional. Parameter tstart specifies the starting
time at which the simulator starts recording results (default is 0). maxStep (if specified) sets an upper
bound on the time step. If uic_flag is set to True, the simulator starts the simulation from a point defined

BULLSEYE Manual
Front-end Design Management

21

by the initial conditions specified using .ic statements. Otherwise the simulation is started from the
operating point results.

Parameters of noise() analysis have the same meaning as for the ac() analysis. Additionally input_instance
specifies the input independent voltage or current source where the equivalent input noise is calculated,
while positive_output and negative_output specify the names of the positive and the negative node of the
output where the noise is measured. The result of the noise() analysis are noise power density spectra.

Analysis with the name ‘op’ is special. This analysis must be an op() analysis and represents the source of
Vgs-Vt and Vds-Vdsat values for enforcing the operating point constraints defined in the OP Region
table.

Variables marked as analysis dependent in the Variable Declaration settings group appear in the right sub
pane of the settings pane. The values of all such variables must be defined for all of the analyses even if
the value is not actually used in the test bench circuit.

BULLSEYE Manual
Front-end Design Management

22

4. Measurements
Bullseye performs measurements on simulation results by evaluating NumPy expressions. The Analysis
column lists the name of the analysis (corresponds to the Name column in Simulation Setup table) that
produces the results used as input to the measurement. Corner specifies the space separated list of corners
in which the measurement is performed. Asterisk (*) stands for all defined corners. Name specifies the
name of the measurement.

Figure 12: Defining the measurements.

The NumPy expression that produces the value of the measurement is listed in column Measurement.
Setting the Analysis column to area results in the area measurement. For the area measurement the
Measurement should be left blank. The value of the area measurement is the sum of area expression
values for all cells specified in the Circuit Under Test table. The area expressions for individual cell types
are listed in the Cell Defaults table in the Area column (see section III).

 The simulation results and the variables are accessed using the following functions/expressions.

 v(‘name’) or v(‘namep’, ‘namen’)
The first form returns the node voltage at node ‘name’ while the second one returns the voltage
between nodes ‘namep’ and ‘namen’.

 i(‘name’)
Returns the current flowing through voltage source with named ‘name’.

 p(‘instance_name’, ‘property_name’)
Returns the value of property ‘property_name’ of instance ‘instance_name’. Note that the desired
property must be listed in the Save Directives table and the name of the corresponding save

BULLSEYE Manual
Front-end Design Management

23

directive group must be specified in the Save column of analysis that produces the results that are
being processed.

 scale()
Returns the default scale of the analysis results.

 param[‘name’]
Returns the value of variable named ‘name’.

If the analysis name is not specified in the Analysis column the measurement is performed after all
measurements that have an analysis specified have been evaluated. Such measurement can’t access
voltages, currents, or instance properties calculated by the simulator because there is no analysis specified
that could provide them. Instead they can use the results of other measurements using the following
syntax.
result[‘measure_name’][‘corner_name’]

For such measurements thisCorner results in the name of the current corner in which the measurement is
being evaluated.

All of the NumPy functions are available for building expressions (as if ‘from numpy import *’ had been
specified in the source file). Additional functions enable signal manipulations and measurements common
in electrical and electronics engineering. These functions can be found in Python module m and are
accessed as m.measurement_name. The following specialized measurements are available (default
values are specified in Python syntax).

Deg2Rad(x)
Input

x .. NumPy array of real values representing angles in degrees
Output
 NumPy array of angles in radians

Converts degrees to radians.

Rad2Deg(x)
Input

x .. NumPy array of real values representing angles in radians
Output
 NumPy array of angles in degrees

Converts radians to degrees.

dB2gain(x, unit='db20')
Input

x NumPy array of real values representing gain values
unit string specifying the unit for gain
 Possible values of unit are ‘db’, ‘db20’, and ‘db10’.

Output
 NumPy array of gain magnitudes.

BULLSEYE Manual
Front-end Design Management

24

Converts gain in decibels of gain (db or db20) or decibels of power gain (db10) to gain magnitude.

gain2dB(x, unit='db20')
Input

x NumPy array of real values representing gain magnitudes
unit string specifying the unit for gain
 Possible values of unit are ‘db’, ‘db20’, and ‘db10’.

Output
 NumPy array of gain magnitudes.

Converts gain magnitude to decibels of magnitude (db or db20) or decibels of power (db10).

BULLSEYE Manual
Front-end Design Management

25

XatI(x, i)
Input
 x NumPy 1-dimensional array of values.
 i fractional index ranging from 0 to len(x)-1
 If it is a vector the result is also a vector.
Output
 The value/values of x at fractional index/indices i obtained through linear interpolation.

Performs linear interpolation based on fractional index.

IatXval(x, val, slope='any')
Input
 x NumPy 1-dimensional array of real values
 val scalar real value

slope type of slope where intersection of x and val is taken into account
 Can be ‘rising’, ‘falling’, or ‘any’.

Output
 1-dimensional numpy array of fractional indices corresponding to intersections between x and val.

Find intersections of a vector and a scalar (table lookup). Result is in the form of fractional indices.

filterI(i, direction='right', start=None, includeStart=False)
Input
 i 1-dimensional NumPy array of fractional indices (possibly obtained from IatXval)

direction direction of search for valid indices
 Can be ‘left’ or ‘right’.
start Initial fractional index.

Default is i[0] for direction=’right’, and i[-1] for direction=’left’.
 includeStart Include fractional indices that are equal to start in result.

Output

For direction ‘right’ (‘left’) returns fractional indices that are greater or equal than (less or equal
than) start. If includeStart is False the comparison operators are greater than (less than).

Filters fractional indices.

BULLSEYE Manual
Front-end Design Management

26

XatIrange(x, i1, i2=None)
Input
 x 1-dimensional NumPy real array

i1 initial fractional index
i2 final fractional index
 Defaults to len(x)-1.

Output
Return a subvector of x corresponding to endpoint indices i1 and i2. Uses linear interpolation at
endpoints.

Return a subvector with fractional indexing and linear interpolation.

dYdI(y)
Input
 y 1-dimensional NumPy real array
Output

NumPy array representing the derivative of y with respect to vector index.

Calculate derivative with respect to vector index.

dYdX(y,x)
Input
 y 1-dimensional NumPy real array
 x 1-dimensional NumPy real array
Output

NumPy array representing the derivative of y with respect to x. Array lengths must match.

Calculate derivative with respect to vector x.

integYdX(y, x)
Input
 y 1-dimensional NumPy real array
 x 1-dimensional NumPy real array
Output

NumPy array representing the definite integral of y from x[0] to x[i]. Array lengths must match.

Calculate definite integral with respect to vector x.

BULLSEYE Manual
Front-end Design Management

27

DCgain(output, input)
Input
 output 1-dimensional NumPy real array of output values
 input 1-dimensional NumPy real array of input values
Output

NumPy array representing the derivative of output with respect to input.

Calculate differential DC gain.

DCswingAtGain(output, input, relLevel, type='out')
Input
 output 1-dimensional NumPy real array of output values
 input 1-dimensional NumPy real array of input values
 relLevel relative gain level with respect to maximal gain considered as swing boundary
 type output value type

Can be ‘out’ (return swing at output) or ‘in’ (return swing at input).
Output

Output or input swing range corresponding to [relLevel*Amax, Amax] differential gain range.

Calculate DC input or output swing for given differential gain range.

ACcircle(unit='deg')
Input
 unit unit for output value
 Can be ‘deg’ (degrees) or ‘rad’ (radians).
Output

Size of full circle (360 degrees or 2*pi radians).

Return the angle corresponding to full circle.

ACtf(output, input)
Input
 output 1-dimensional NumPy real or complex array of AC output values

input 1-dimensional NumPy real or complex array of AC input values
Output

Complex transfer function from input to output.

Calculate complex transfer function from complex AC results.

BULLSEYE Manual
Front-end Design Management

28

ACmag(tf, unit='db')
Input
 tf 1-dimensional NumPy complex array representing the transfer function

unit unit for output
 Can be ‘db’, ‘db20’ (decibels of gain), db10 (decibels of power),

or ‘abs’ (absolute magnitude).
Output

Magnitude of complex transfer function.

Calculate the magnitude of complex transfer function.

ACphase(tf, unit='deg', unwrapTol=0.5)
Input
 tf 1-dimensional NumPy complex array representing the transfer function

unit unit for output
 Can be ‘deg’ (degrees) or‘rad’ (radians).
 unwrapTol angle unwrap tolerance relative to pi
Output

Phase of complex transfer function.

Calculate the phase of complex transfer function.

ACgain(tf, unit='db')
Input
 tf 1-dimensional NumPy complex array representing the transfer function
 unit unit for output value
Output

Maximal gain magnitude of complex transfer function.

Calculate the maximal gain magnitude of complex transfer function.

ACbandwidth(tf, scl, filter='lp', unit='db', level=-3.0)
Input
 tf 1-dimensional NumPy complex array representing the transfer function

scl 1-dimensional NumPy complex array representing the frequency scale
filter filter type for bandwidth calculation
 Can be ‘lp’ (low-pass), ‘hp’ (high-pass), or ‘bp’ (band-pass).

 unit unit for the level parameter
Can be ‘db’, ‘db20’, ‘db10’, or ‘abs’.

 level level defining the edge of pass-band
 If unit=’abs’ the level is a multiplier for maximal absolute gain magnitude.
Output

Bandwidth of a complex transfer function.

Calculate the bandwidth of a complex transfer function.

BULLSEYE Manual
Front-end Design Management

29

ACugbw(tf, scl)
Input
 tf 1-dimensional NumPy complex array representing the transfer function

scl 1-dimensional NumPy complex array representing the frequency scale
Output

Unity gain bandwidth (frequency where absolute gain magnitude reaches 1).

Calculate the unity gain bandwidth of a complex transfer function.

ACphaseMargin(tf, unit='deg', unwrapTol=0.5)
Input
 tf 1-dimensional NumPy complex array representing the transfer function
 unit unit for the output value
 Can be ‘deg’ (degrees) or ‘rad’ (radians).

unwrapTol angle unwrap tolerance relative to pi
Output

Phase margin of a complex transfer function (difference between the phase when absolute gain
magnitude reaches 1 and -180 degrees).

Calculate the phase margin for a complex transfer function.

ACgainMargin(tf, unit='db', unwrapTol=0.5)
Input
 tf 1-dimensional NumPy complex array representing the transfer function
 unit unit for the output value
 Can be ‘db’, ‘db20’, ‘db10’, or ‘abs’.

unwrapTol angle unwrap tolerance relative to pi
Output

Gain margin of a complex transfer function (how much the gain must increase from the level
corresponding to -180 degrees phase to reach unity gain).

Calculate the gain margin for a complex transfer function.

BULLSEYE Manual
Front-end Design Management

30

Tdelay(
sig1, sig2, scl,

 lev1type='rel', lev1=0.5, edge1='any', skip1=0,
 lev2type='rel', lev2=0.5, edge2='any', skip2=0,
 t1=None, t2=None
)
Input
 sig1 1-dimensional NumPy real array representing the first signal
 sig2 1-dimensional NumPy real array representing the second signal
 scl scale common to both signals
 lev1type type of level for finding the reference point in the first signal
 Can be ‘abs’ (absolute signal value) or ‘rel’ (relative signal value).
 lev1 level defining the reference point in the first signal
 edge1 type of edges to consider when searching for crossings between sig1 and lev1
 Can be ‘rising’, ‘falling’, or ‘any’. See IatXval().
 skip1 number of crossings in sig1 to skip before the reference point is reached
 lev2type same as lev1type, except that it applies to sig2
 lev2 same as lev1, except that it applies to sig2
 edge2 same as edge1, except that it applies to sig2
 skip2 same as skip1, except that it applies to sig2
 t1 starting point of scale range that is considered
 Default is beginning of scale.

t2 end point of scale range that is considered
 Default is end of scale.

Output
 Difference in scale between the reference points in sig2 and sig1.

Calculates the delay between reference points in two signals. If lev1type or lev2type is ‘rel’ the absolute
signal value is calculated relative to the levels of sig1 and sig2 at t1 and t2.

Tovershoot(sig, scl, t1=None, t2=None, outputType='rel')
Input
 sig 1-dimensional NumPy real array representing the signal
 scl 1-dimensional NumPy real array representing the scale for the signal
 t1 starting point of scale range that is considered
 Default is beginning of scale.

t2 end point of scale range that is considered
 Default is end of scale.
outputType type of output value
 Can be ‘rel’ (relative to difference between signal values at t1 and t2) or
 ‘abs’ (actual overshoot value).

Output
 Overshoot of a signal.

Calculates the overshoot of a signal.

BULLSEYE Manual
Front-end Design Management

31

Tundershoot(sig, scl, t1=None, t2=None, outputType='rel')
Input
 sig 1-dimensional NumPy real array representing the signal
 scl 1-dimensional NumPy real array representing the scale for the signal
 t1 starting point of scale range that is considered
 Default is beginning of scale.

t2 end point of scale range that is considered
 Default is end of scale.
outputType type of output value
 Can be ‘rel’ (relative to difference between signal values at t1 and t2) or
 ‘abs’ (actual overshoot value).

Output
 Undershoot of a signal.

Calculates the undershoot of a signal.

TedgeTime(

edgeType, sig, scl,
 lev1type='rel', lev1=0.1,
 lev2type='rel', lev2=0.9,
 t1=None, t2=None
)
Input
 edgeType type of edge to consider
 Can be ‘rising’, ‘falling’, or ‘any’. See IatXval().
 sig 1-dimensional NumPy real array representing the signal
 scl 1-dimensional NumPy real array representing the scale for the signal

lev1type type of level for finding the first reference point
 Can be ‘abs’ (absolute signal value) or ‘rel’ (relative signal value).
 lev1 level defining the first reference point

lev2type type of level for finding the second reference point
 Can be ‘abs’ (absolute signal value) or ‘rel’ (relative signal value).
 lev1 level defining the second reference point
 t1 starting point of scale range that is considered
 Default is beginning of scale.

t2 end point of scale range that is considered
 Default is end of scale.

Output
 Rise/fall time of a signal.

Calculates the edge time (rise/fall) between two reference points in a signal. If lev1type or lev2type is
‘rel’ the absolute signal value is calculated relative to the levels of the signal at t1 and t2.

BULLSEYE Manual
Front-end Design Management

32

TriseTime(
sig, scl,

 lev1type='rel', lev1=0.1,
 lev2type='rel', lev2=0.9,
 t1=None, t2=None
)
Same as TedgeTime with edgeType=’rising’.

TfallTime(

sig, scl,
 lev1type='rel', lev1=0.1,
 lev2type='rel', lev2=0.9,
 t1=None, t2=None
)
Same as TedgeTime with edgeType=’falling’.

TslewRate(

edgeType, sig, scl,
 lev1type='rel', lev1=0.1,
 lev2type='rel', lev2=0.9,
 t1=None, t2=None
)
The difference between signal at t1 and t2 divided by the result of TedgeTime().

TsettlingTime(sig, scl, tolType='rel', tol=0.05, t1=None, t2=None)
Input
 sig 1-dimensional NumPy real array representing the signal
 scl 1-dimensional NumPy real array representing the scale for the signal

tolType type of settling tolerance
 Can be ‘abs’ (absolute signal value) or ‘rel’ (relative signal value).
 tol settling tolerance

t1 starting point of scale range that is considered
 Default is beginning of scale.

t2 end point of scale range that is considered
 Default is end of scale.

Output
 Settling time of a signal.

Calculates the time from t1 to the moment when the signal settles within settling tolerance of value at t2.
If tolType is ‘rel’ the settling tolerance is calculated by multiplying tol with the difference of signal
values at t1 and t2.

BULLSEYE Manual
Front-end Design Management

33

Figure 13: Setting the goals, norms, penaties, and tradeoffs.

For every measurement one of the following goal types can be set in the unnamed column between
Measurement and Goal:

 < smaller than goal
 > greater than goal
 <> within tolerance of goal

The goal value is specified in the Goal column. It is a single value for goal types “smaller than” and
“greater than”, and a space separated pair specifying the goal and the tolerance in case of the “within
tolerance” goal type. The latter results in optimizer forcing the measurement to be between goal-tol and
goal+tol.

The norm can be specified for every measurement in the Norm column. Of norm is not specified it is
equal to the goal value or 1 if the goal is 0. The penalty and the tradeoff weight are specified in the
Penalty W and Tradeoff W columns. The tradeoff weight can be omitted which results in its default value
(0).

The values of measurements across all corners along with the worst measurement value for the active
iteration selected in the Results Browser can be viewed in the right sub pane of the Measurement
Declaration pane. Green fields denote measurements that satisfy the goal while red fields mean that a
measurement fails to satisfy the goal. Measurements with both penalty and tradeoff weight set to 0 do not
affect the cost function. The coloring of such measurements is a grey shade of green and red.

BULLSEYE Manual
Front-end Design Management

34

Figure 14: Viewing the measurement results across corners.

BULLSEYE Manual
Front-end Design Management

35

5. Model declaration
The Model Declaration settings group enables you to declare pairs of the form (file, section) and name
them for the purpose of using them as corner models. Every row describes one such pair. The name by
which the pair is referred to in the Corner Declaration table is entered in the Name column.

Figure 15: Declaring models.

BULLSEYE Manual
Front-end Design Management

36

6. Corner declaration
Corners are declared in the Corner Declaration settings group. Every row declares one corner. The name
of the corner is entered in the Name column. Model column specifies the name of the (file, section) pair
that is used as the model for that corner. The Temp column specifies the temperature for the corner. All
variables marked as corner dependent in Variable Declaration settings group appear in the right sub pane
of the settings pane. Their value must be defined for every corner.

Figure 16: Declaring corners.

BULLSEYE Manual
Front-end Design Management

37

IX. Optimizer settings

Figure 17: Optimizer settings.

The following optimizer settings are available:

 Method
Specifies the optimization method. Available values are

- local
Local method, works with one CPU.

- heuristic
A mixture of local search and random initialization, works with one CPU.

- global
Global method based on simulated annealing and differential evolution.
Can run in parallel on multiple CPUs.

- user defined
Reserved for future use.

 User Method and Options
Reserved for future use. Active only when ‘user defined’ method is selected.

 Parallel Storage Mapping
Specifies the mapping of local files and directories to remote files and directories in parallel
optimization runs. A mapping is of the form local_name=remote_name. Multiple mappings must
be space-separated.

BULLSEYE Manual
Front-end Design Management

38

 Visualize Improvements
If enabled the properties of every circuit that improves the cost function will be plotted according
to settings in the Graphic Output settings group.

 Debug
Enables debug mode. Debug information goes to the file named log.txt in the session directory.

 Debug Level
Debug levels for various modules in the optimizer. A debug level is given as module=value. A
higher value means more verbose output. Debugging of a module is turned off if the value is set to
0. If no debug level is specified for a module the debugging is also turned off. Debug levels for
multiple modules can be set by separating them with space. The following modules are available:

- simulator - controls the simulator (generates simulator input files, runs analyses and
collects results),

- evaluator – evaluates measurements from results collected by the simulator module,
- cost – evaluates the cost function from measurement values produced by the evaluator,
- optimizer – generates optimization parameter values depending on the results obtained

from cost function evaluations,
- event – handles event dispatching in parallel optimization algorithms,
- vm – interface to the library taking care of the communication between individual

processes in a parallel optimization run (currently only PVM is supported).
 Stop Cost

The optimization is stopped if the cost function value becomes smaller than this setting. If no
value is specified the optimization runs until some other condition stops it.

 Stop When All Satisfied
Stops the optimizer when all measurements fulfill their respective goals. Should not be enabled
you want to optimize beyond goals (when tradeoff weights are not all equal to 0).

 Minimal Cost Improvement RelTol
Relative tolerance of minimal cost function improvement that triggers the output of full details for
an iteration of the optimization run.

 Minimal Cost Improvement AbsTol
Absolute tolerance of minimal cost function improvement that triggers the output of full details of
an iteration of the optimization run into the results file.
Storing the details in the results file also triggers performance visualization if the Visualize
Improvements option is enabled.
If both AbsTol and RelTol are set to 0 all improvements to the best-yet cost function value are
stored in the results file.

 Max Iterations per Optimization Run
Maximal number of cost function evaluations. After this number is exceeded the optimizer stops.
Must be given for all optimization algorithms.

 Tradeoff Weight
Global multiplier for tradeoff weights of measurements. A reasonable default is 1e-6 (i.e. 1u).

 Penalty Weight
Global multiplier for penalty weights of measurements. A reasonable default is 1. Should be much
greater than the value specified as the Tradeoff Weight.

BULLSEYE Manual
Front-end Design Management

39

 OP Region Violation Norm
Norm for operating region constraints. 1e-3 (i.e. 1m) is a reasonable default.

 OP Region Violation Penalty
Penalty weight for operating region constraint violations. A reasonable default is 1.

 Session Directory
This cell cannot be written. Instead of that it displays the directory of the current session. This is
also the directory where the results file and the log.txt file are written.

 Results File
Name of the file summarizing the results of the optimization run. Usually results.txt.

 Refresh Results Period
Period in seconds that is used for Results Browser refreshing. A manual refresh can be achieved
by selecting Optimizer/Refresh Results in the main menu or by pressing CTRL+R.

 Simulation Options
A space separated list of simulator options (.option statement) specified in name=value form.

BULLSEYE Manual
Front-end Design Management

40

X. Graphic output setup

1. Graph list
Every row in the Graph List table represents one graph window. The name of the window is pecified by
the Name column. Width and Height specify the size of the window in pixels. The grid is specified by the
Grid column (linear, xlog,m ylog, loglog, or polar). If specified, X Limit and Y Limit disable the
automatic axis scaling. A fixed range specified in the corresponding cell is used. The range is specified as
a set of two space-separated values. Every graph window can have a title, x-axis label and y-axis label
(Title, X Label, and Y Label columns).

Figure 18: Defining graphic windows.

BULLSEYE Manual
Front-end Design Management

41

2. Trace styles
Every row in the Trace Styles table specifies one trace style. Trace styles are tested against trace and
corner names. If a match is found the style is applied to the matched trace. Matching is performed against
the value of the Name and Corner columns. Either of them can be set to * which matches any name. Trace
styles are tried in the same order as they appear in the table (from top to bottom). If multiple styles match
a particular trace-corner combination, the last one defines the style used for the trace.

Figure 19: Defining trace styles.

Every trace style specifies the line width, the point size, the plotting style (o, x, +, d, line, or comb), and
the color of a trace. Plotting styles o, x, +, and d result in point plots with circular, crosshair, plus, and
diamond points, respectively. The colors are specified as 6-digit hex codes where pairs of digits specify
the red, green, and the blue component of a color. By double-clicking on a color cell a color picker is
opened where you can pick or mix a color with the mouse.

BULLSEYE Manual
Front-end Design Management

42

3. Trace list
In the Trace List table every row corresponds to one trace (a pair of two expressions specifying the values
for the x-axis and the y-axis. The expressions for both axes are specified in the Expression and Scale
columns. Every trace has a name specified by the Name column. The Graph column specifies the graph
window in which the trace will appear. Analysis column specifies the analysis that supplies the results for
the x-axis and the y-axis expressions. Finally Corners specifies a space-separated list of corners for which
the trace will be plotted. An asterisk (*) matches all defined corners.

Figure 20: Specifying traces for plotting.

In the right sub pane the trace style specified by the patterns in the Trace Styles table can be overridden
(line width, point size, plotting style, and color).

BULLSEYE Manual
Front-end Design Management

43

XI. Starting a run
The session is exported by selecting Optimizer/Export in the main menu. Errors that occur during the
export are listed in the message pane. A run is started by selecting Optimizer/Export And Run in the main
menu. This option first exports the session and if the export is successful starts the optimization. An
optimization run in progress can be recognized from the console window that pops up. Closing the
window stops the optimization.

The results are written into the results file (usually results.txt). The log of the optimizer’s actions and the
debug messages are written to the log.txt file. Only one optimization run may be started in a session
directory. If you start multiple runs the results are unpredictable.

XII. Inspecting the results (results browser)
As the optimization progresses the results start pouring in. They can be obtained from the results file. A
convenient representation of the results can be viewed in the Results Browser. Results get refreshed
automatically from time to time (see the Refresh Results Period optimizer setting). Usually you want to
refresh results manually by selecting Optimizer/Refresh Results from the main menu or by pressing
CTRL+R.

Figure 21: Results browser with the last iteration not satisfying all goals marked active.

The right sub pane of the results browser displays the results of one iteration per column. The left sub
pane displays the results of the best iteration. Iteration can be made active by clicking on its column. The

BULLSEYE Manual
Front-end Design Management

44

active iteration is displayed in the bottom right corner of the Bullseye window. Details of the active
iteration are available in the Circuit Under Test, OP Region, and Measurement Declaration tables.

Figure 22: Displaying the properties of an iteration graphically.

For every iteration the corresponding values of optimization parameters are displayed along with bars
indicating the relative position of parameter values with respect to the minimal and maximal allowed
value on the bottom of every column. The middle part of every column displays the worst values of

BULLSEYE Manual
Front-end Design Management

45

measurements. In the Name column the corner where the worst value occurs is displayed along with the
measurement name for the active iteration.

At the top the iteration number, the corresponding cost function value, and the area of the circuit
corresponding to the iteration are displayed. Cond1 OK and Cond2 OK display the number of satisfied
operating region requirements against the total number of operating region requirements.

Color of a cell indicates if the worst measurement value satisfies the goal. Red means that the
measurement fails to satisfy the goal while green means that the measurement satisfies the goal. If the
both tradeoff and penalty weight of a measurement are set to zero the measurement does not affect the
cost function value. Such measurements are color coded using a gray shade of red and green.

By right-clicking a cell the context menu of a column (iteration) is opened. Selecting the Set as Seed
option copies the values of the optimization parameters corresponding to the clicked iteration into the
Seed column of the Circuit Under Test table.

By selecting the Plot Iteration option from the context menu the iteration is reevaluated in the simulator
and the corresponding graph windows (the ones defined in the Graphic Output settings group) for that
iteration are displayed. The progress of evaluation and its results are displayed in a console window.

Plotting of iteration may be invoked while the optimization is running albeit it may appear slow due to the
workload the optimization imposes on the CPU.

Plot windows can be closed by closing the console window that displays the simulation results of the
selected iteration. Do not close the console window that popped up when the optimization was started
because closing it will stop the optimization.

