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Sprouting search - an algorithmic framework for asynchronous

parallel unconstrained optimization
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Direct search optimization algorithms are becoming an important alternative to well established gra-
dient based methods. Due to the fact that a single cost function evaluation may take a substantial
amount of time, optimization can be a lengthly process. In order to shorten the run time one often
resorts to parallel algorithms. Asynchronous algorithms are particularly efficient since they have no
synchronisation points. This paper is an attempt to establish a convergence theory for a class of such
parallel direct search algorithms. The notion of a search direction generator (SDG) is introduced.
An algorithmic framework for parallel distributed optimization methods based on SDGs is presented
along with the corresponding convergence theory. The theory almost completely decouples the step-
size control from the sufficient descent requirement, which is necessary for the finite termination of
the algorithm’s inner loop. The proposed framework has several attributes considered very favorable
in loosely coupled parallel systems (e.g. clusters of workstations), such as fault tolerance and scala-
bility. The framework is illustrated by optimizing a set of test problems on a cluster of workstations.
In all tested cases a speedup was obtained that increased with the increasing number of workstations.
Fault tolerance and scalability of the framework were also demonstrated by removing and adding
workstations to the cluster while an optimization run was in progress.
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1 Introduction

n-dimensional unconstrained optimization problems of the form minx∈Rn f(x),
f : Rn → R often involve solving local optimization problems (i.e. finding a
local minimum of a function by starting the search from some given initial
point x0).

There exist many algorithms for solving unconstrained local optimization
problems when not only f(x), but also the gradient ∇f(x) is available for
every point x ∈ Rn. Unfortunately when it comes to real-world optimization
problems, reliable gradient information is not available since the cost function
value is the result of some simulation or even measurement.
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For solving such problems direct search methods can be used since they
don’t require gradient information. The development of many of the today
known direct search methods began in the 1960s. Several methods were de-
veloped albeit only a few of them came with a convergence theory. Especially
notorious is the Nelder-Mead simplex algorithm [1], which performs very well
in practise, and for which recently cases were discovered [2–4] implying that
it doesn’t necessarily converge even for well behaved functions. Due to the
lack of mathematical analysis direct search methods were mostly ignored by
the optimization community for a long time. Nevertheless the increasing in-
terest in practical use of optimization brought new life to the field in the late
1980s with the analysis of multidirectional search (MDS) [4, 5] and later pat-
ters search (PS) [6]. The notion of pattern search was extended to grid-based
search (GBS) [7], frame-based search (FBS) [8], global convergence framework
for unconstrained derivative-free minimization (GCF) [9] and recently [10].
Several practical results were obtained from the aforementioned frameworks.
PS provided a convergence theory for MDS, Hooke-Jeeves search (HJ) [11], and
several other algorithms. From GBS an algorithm with finite termination on
quadratics emerged [12]. One of the most interesting results is the convergent
Nelder-Mead algorithm proposed in [13,14] which draws its foundations from
GBS. A very good overview of direct search methods can be found in [3,15,16].

Optimization problems can easily overwhelm state-of-the-art hardware since
a single cost function evaluation can take a long time. This calls for efficient
parallel optimization algorithms which are expected to accelerate the search
by taking advantage of multiple processors working in parallel. Among other,
two major approaches to parallelization can be found in literature. The first
one divides the trial points among processors (see for instance [5, 17]). The
second one divides the space in subspaces and assigns one such subspace to
each processor [18–21]. Throughout the search processors exchange their best-
yet values of f(x), their position in the search space, stepsize information, and
possibly other auxiliary data in order to guide the search to a common goal:
a local minimizer of f(x).

First attempts at parallel optimization produced synchronous algorithms.
Such algorithms have one or more synchronisation points. When a processor
reaches the synchronisation point in the algorithm, it stops and waits until
other processors also reach it. Generally information exchange takes place at
synchronsation points. Several approaches to parallel synchronous optimiza-
tion can be found in literature. See for instance [5,17,22,23]. The approaches
in [18–21] are also originally targeted for synchronous execution.

Synchronous execution has a major downside which becomes obvious as
soon as the time required to evaluate the cost function starts to vary. Some
processors finish sooner than the others. Due to synchronisation points all of
them must wait for the last one to finish. If the variations of the evaluation
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time are large, the total idle time can be significant when compared to the
total processing time spent by the processors. The result is a decrease in
acceleration. The cost function evaluation time can vary especially for iterative
algorithms such as solving nonlinear or differential equations (which is the case
in most simulators). In case the parallel processors are not tightly coupled, the
delay introduced by the communication channel between individual processors
may also become significant when compared to the cost function evaluation
time. At the bottom line this also results in processor idle time and the effect
again, is reduced acceleration.

There is no way to overcome the delay introduced by the communication
channel, except by using one that is faster and more responsive. However there
can be something done about the variations of the evaluation time. By remov-
ing the synchronisation points from the algorithm an asynchronous parallel
algorithm is obtained. Such algorithms inherently have no idle time caused
by cost function evaluation time variations. The removal of synchronisation
points brings along some difficulties. An asynchronous system is harder to
manage than a synchronous one due to the fact that the information available
to a processor may be outdated.

To our best knowledge the only asynchronous parallel direct search algo-
rithm in the literature is the asynchronous parallel pattern search (APPS) [24].
The algorithm is derived from PS. It assigns one of the search directions to
every processor. As soon as a processor finds a better point in its direction (in-
ternal success) it broadcasts it to all other processors and optionally increases
the stepsize. If it fails to find a better point the stepsize is decreased (failure).
When a broadcast is received, a processor checks if the received point is better
than its current best point. If it is, the received point and stepsize replace the
current best point and stepsize (external success).

The convergence proof for APPS can be found in [25] and some additional
explanations in [26]. The notation is similar to the one found in [27] for track-
ing iterates across processors in asynchronous parallel iterative algorithms.
PS doesn’t impose a sufficient descent condition. It requires only simple de-
scent. Therefore the iterates must lie on a rational lattice in order to ensure
convergence. This is achieved by imposing rationality requirements on search
directions and stepsize change factors. The two requirements are sufficient
for convergence to a stationary point of f(x) for the sequential (and syn-
chronous) PS. In case of the asynchronous algorithm more is required. Since
every processor searches in its own direction one must ensure that a subset
of processors, whose search directions build a positive spanning set [28], has
a common accumulation point where the stepsize approaches zero. In APPS
this is achieved by imposing an additional requirement on the stepsize change
parameter. When the step is changed after an internal success the resulting
stepsize parameter must be bounded by a lower and an upper bound. After
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a lengthly proof one obtains that the stepsize goes to zero and that the pro-
cessors share a common accumulation point. Consequently by means of same
reasoning as in PS it follows that the accumulation point is also a stationary
point of f(x).

APPS has several disadvantages. First of all the stepsize parameter is com-
mon for all search directions. If the search in one direction requires short
steps, search in all other directions also proceeds with short steps. Secondly
a common accumulation point for all processors is guaranteed by limiting the
stepsize after a successfull step. The stepsize limitation eventually leads to pro-
longed periods of stepsize decrease during which the best point in the system
propagates across all processors. Some means for decoupling the stepsize con-
trol from the mechanism for providing a common accumulation point would
be beneficiary and would make the algorithm and its convergence theory sim-
pler. This would be of great benefit for defining new asynchronous parallel
optimization algorithms based on well established sequential or synchronous
parallel algorithms like the convergent Nelder-Mead simplex algorithm [13,14]
or the parallel variable transformation [21].

The remainder of this paper is organized as follows. First some basic infor-
mation regarding positive spanning sets, positive bases, and limit points of
sequences of direction sets are provided. Next the notion of a search direc-
tion generator and its feasibility is introduced, illustrated by examples. The
algorithmic framework is presented along with a convergence theory. The con-
ditions assuring the convergence of algorithms conforming to the presented
framework are discussed, followed by the framework’s possibilities in the field
of parallel asynchronous direct search. Special emphasis is given to the algo-
rithm’s run-time scalability and fault tolerance. Finally results obtained by
a cluster of workstations running an algorithm conforming to the aforemen-
tioned framework are provided and discussed. The paper concludes with a
summary of its main results.

Notation. R, Q, Z, and N denote the sets of real, rational, integer, and natu-
ral numbers, respectively. Similarly R+, Q+ denote nonnegative real and ratio-
nal numbers. Let |A| denote the number of elements in set A, ‖x‖ the euclidean
norm of x, xTy the scalar product of x and y, and Lf (x) = {y : f(y) ≤ f(x)}
a level set of f(x). With γA we denote the set whose members are members of
set A scaled by γ. Similarly −A denotes the set whose members are members
of set A multiplied by −1. In fact whenever an arithmetic operation x ⊙ A
takes place with x being a scalar (a vector) and A being a set of scalars (vec-
tors), the result is a set of all scalars (vectors) x ⊙ a where a is a member of
A.

In the following sections we shall assume that the cost function f(x) is
continuously differentiable. A direction is any nonzero vector. We denote the
dimensionality of the search space by n. Let Un

S denote the set of all possible



Sprouting search 5

subsets of Rn.

2 Generating the sequence of directions

The approach proposed herein differs from the one developed by Lucidi and
Sciandrone [9] in the sense that directions are generated one at a time. The use
of a search direction generator (SDG) broadens the scope of the framework.
As it will become evident at a later point in the paper, SDGs can be capable of
adapting to the cost function behaviour. The set of restrictions imposed on a
feasible SDG serves two purposes. First of all to make possible the generation
of an infinite sequence of candidate stationary points, and secondly to ensure
that a positive spanning set of steps is examined around every limit point of
the search.

2.1 Positive spanning sets and search direction generators

In this section some basic information regarding positive spanning sets is pro-
vided to the reader. Then the notion of a search direction generator is intro-
duced and discussed.

Definition 2.1 The positive span of a set of vectors D = {d1, d2, ...,dm} ⊂
Rn is a set defined as span+D = {x : x =

∑m
i=1 αid

i, αi ≥ 0}.

Definition 2.2 B = {b1, b2, ..., bm} is a positive basis for Rn if it positively
spans Rn and has no proper subset that positively spans Rn.

A positive basis has at least n + 1 members and no more than 2n members.
Refer to [28] for a detailed explanation of positive bases and their properties.
Positive spanning sets play an important role in convergence analysis of many
direct search methods. The reason for this is the following lemma.

Lemma 2.3 Suppose that Rn is in the positive span of P and x ∈ Rn. Then
the following deduction can be made

xTp ≥ 0,∀p ∈ P ⇒ x = 0. (1)

Proof Since P positively spans Rn, −x can be expressed as −x =∑m
i=1 αip

i, αi ≥ 0,∀i. Now we can write −xTx =
∑m

i=1 αix
Tpi ≥ 0. But

−xTx ≤ 0 must also hold. Both can be true only if x = 0. �

Using the property described in lemma 2.3 direct search algorithms detect
that x is a stationary point of a continuously differentiable function by evalu-
ating the function on rays originating from x in directions defined by members
of B.
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Let {P} denote a sequence of sets that positively span Rn. Note that not
necessarily all members of the sequence comprise the same number of direc-
tions.

Definition 2.4 P∞ = {p1
∞, p2

∞, ...,pm
∞} is a limit point of sequence {Pk}

∞
k=1

if and only if for every ǫ > 0 there exist infinitely many P ∈ {Pk}
∞
k=1, |P∞| =

|P| = m for which one can find {q1, q2, ..., qm} = P such that

‖pi
∞ − qi‖ ≤ ǫ, i = 1, 2, ..., m. (2)

Definition 2.5 A sequence of positive spanning sets {Pk}
∞
k=1 is positively

degenerate if it has some limit point P∞ whose positive span does not include
Rn.

Lemma 2.6 Suppose that P = {p1, p2, ...,pm} positively spans Rn. Then
Q = {q1, q2, ..., qr} positively spans Rn if every p ∈ P can be expressed as
a nonnegative linear combination of members of Q.

Proof Since P positively spans Rn, any x ∈ Rn can be expressed as

x =
m∑

j=1

αjp
j , pj =

r∑
i=1

βi,jq
i.

Now we can write

x =
m∑

j=1

αj

r∑
i=1

βi,jq
i =

r∑
i=1

(
m∑

j=1

βi,jαj)q
i.

Due to αj ≥ 0 and βi,j ≥ 0 it directly follows
∑m

j=1 βi,jαj ≥ 0. �

Lemma 2.6 implies that one can check whether P is a positive spanning set
by simply solving m nonnegative least square (NNLS) problems of the form
Vy = p (one for every p ∈ P) where the columns of V are members of Q. If a
solution with ‖Vy−p‖ = 0 for all m NNLS problems is obtained Q positively
spans Rn.

Torczon [6] and later Lewis and Torczon [29] prooved the following lemma.

Lemma 2.7 For any set P positively spanning Rn there exists ǫ > 0 such that
for any x ∈ Rn, ‖x‖ = 1 there exists p ∈ P with pTx ≥ ǫ‖p‖.

Lemma 2.7 guarantees that for a given positive spanning set and any vector
x there exists a member of the positive spanning set p such that the angle
between p and x remains uniformly bounded away from π/2. This fact guaran-
tees (if the step is sufficiently small) a fraction of steepest descent along some
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member of the positive spanning set for continuously differentiable functions
(see [6]).

Since the zero vector can be expressed as a nontrivial positive combination
of members of P (add the positive combination for x 6= 0 to the positive
combination for −x) there exist infinitely many ways to express some x ∈ Rn

as a positive combination of members of P. The following lemma deals with
the existence of a positive combination whose coefficients remain bounded with
regard to the norm of x.

Lemma 2.8 Suppose that B positively spans Rn. Then for any x ∈ Rn there

exists a positive combination of members of B such that x =
∑|B|

i=1 αib
i and∑|B|

i=1 αi < C‖x‖ where C is a positive constant.

Proof For every x ∈ Rn and every positive spanning set B there exists

q = arg max
b∈B

xTb/(‖b‖‖x‖), xTq > 0.

There exists such β ≥ 0 that x can be decomposed as x = βq + r and
rTq = 0. Lemma 2.7 assures us that there exists 0 ≤ ǫ = cos θ < 1 such
that qTx ≥ ǫ‖q‖‖x‖ where ǫ depends only on the choice of B. The following
estimate can be derived

‖r‖2 ≤ ‖x‖2(1 − ǫ2) = ‖x‖2 sin2 θ. (3)

By starting with x and sequentially reapplying the above mentioned decom-
position procedure to r a series for x is obtained

x =
∞∑
i=0

βiqi, βi > 0, qi ∈ B. (4)

β0‖q0‖ ≤ ‖x‖, βi‖qi‖ ≤ ‖ri−1‖ ≤ ‖x‖ sini θ (for i > 0), and (3) yields the
following estimate from (4)

‖
∞∑
i=0

βiqi‖ ≤
∞∑
i=0

βi‖qi‖ ≤ ‖x‖
∞∑
i=0

sini θ = ‖x‖(1 − sin θ)−1. (5)

On the other hand

‖bmin‖

|B|∑
i=0

αi = ‖bmin‖
∞∑
i=0

βi ≤
∞∑
i=0

βi‖qi‖ (6)
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where bmin = arg minb∈B ‖b‖. Now by joining (5) and (6) it follows that

|B|∑
i=1

αi =
∞∑
i=1

βi ≤ ‖bmin‖−1(1 − sin θ)−1‖x‖.

�

Let bmin and bmax denote arg minb∈B ‖b‖ and arg maxb∈B ‖b‖ respectively.
λ > 0 is a lower and Λ an upper bound on ‖p‖ for all p ∈ P.

Lemma 2.9 Let B denote a set that positively spans Rn. Suppose that any b ∈
B can be expressed in the NNLS manner as b = Vy where ‖y‖ ≤ C‖bmax‖/λ,
C ≥ 1, and the columns of V are members of P. Then there exists 0 < ǫ < 1
such that for any x ∈ Rn, ‖x‖ = 1 some p ∈ P can be found with xTp ≥ ǫ‖p‖.

Proof Due to lemma 2.6 P positively spans Rn and x can be expressed as

x =

|P|∑
i=1

(

|B|∑
j=1

βi,jαj)p
i.

The norm of x can be written as

‖x‖2 = xTx =

|B|∑
j=1

(

|P|∑
i=1

βi,jαj)x
Tpi ≤ max

p∈P
xTp

|B|∑
j=1

(

|P|∑
i=1

βi,jαj).

‖y‖ ≤ C‖bmax‖/λ implies βi,j ≤ C‖bmax‖/λ. Then from Lemma 2.8 it follows

1 ≤ C|P|‖bmax‖λ−1 max
p∈P

xTp

|B|∑
j=1

αj

≤ C|P|‖bmax‖‖bmin‖−1(1 − sin θ)−1λ−1 max
p∈P

xTp

where θ is defined as in the proof of Lemma 2.8. Finally xTp/Λ ≤ xTp/‖p‖
and therefore

max
p∈P

xTp

‖p‖
≥

‖bmin‖λ(1 − sin θ)

C‖bmax‖Λ|P|

�
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Definition 2.10 A search direction generator (SDG) is a transformation:

G : (xo,S) 7→ p, S ∈ Un
S , xo, p ∈ Rn.

Definition 2.11 Suppose xo ∈ Rn, S0 ∈ Un
S , and Si is obtained by iterating

pi = G(xo,Si) (7)

Si ∪ {xo + pi} ⊆ Si+1, i = 0, 1, 2, ...

Let P i denote the set obtained from Si with P i = Si−xo. The search direction
generator G is feasible for n-dimensional search if for any S0 ∈ Un

S and any
xo ∈ Rn there exists such n < N < ∞ and B ⊆ PN that B has the following
properties

∀b ∈ B : λ ≤ ‖b‖ ≤ Λ, (8)

∀q ∈ Rn, ‖q‖ = 1,∃b ∈ B : qTb ≥ ‖b‖ cos θ.

The requirement N > n arises from the fact that a minimal positive basis
for Rn consists of n + 1 directions. The scalars λ, Λ, and θ are positive real
constants satisfying 0 < λ ≤ Λ, and 0 ≤ θ < π/2. Let D denote the set
obtained by scaling the members of B with 1/Λ.

Lemma 2.12 Assume a sequence of sets {S0
k}

∞
k=1 from Un

S , a sequence of fea-
sible SDGs {Gk}

∞
k=1, and sequences of positive numbers {λk}

∞
k=1 and {Λk}

∞
k=1

(0 < λk ≤ Λk). Dk is generated by applying the iteration (7) (starting with
S0

k) using Gk, λk, and Λk until some Bk satisfying conditions in (8) is found.
Suppose that λk/Λk ≥ γ, 0 < γ ≤ 1. Then the resulting sequence {Dk}

∞
k=1 has

at least one limit point D∞ and every limit point positively spans Rn.

Proof Due to the first condition in (8) any direction from any Dk remains
bounded (γ ≤ ‖p/Λk‖ ≤ 1). Therefore the sequence {Dk}

∞
k=1 admits at least

one limit point D∞ and 0 6∈ D∞. The second requirement in (8) ensures, that
no matter how a nonzero vector q ∈ Rn is chosen there exists at least one
p ∈ Dk such that the angle between q and p is bounded uniformly away from
π/2. By means of an argument similar to the one in the proof of Lemma 2.8
one can come to the conclusion that Dk positively spans Rn. Since the second
requirement must hold for all Dk, it must also hold for D∞. Finally it follows
that D∞ positively spans Rn. �
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2.2 An example of a search direction generator

It can be of great advantage if the SDG is capable of detecting whether the
set Pi has some subset that is a positive basis for Rn and satisfies (8). In such
case it is supposed to produce a zero direction vector p = 0 signaling the
optimization algorithm that a positive basis has been found. It is not of vital
importance to the convergence properties of the algorithm that the positive
basis is detected as soon as it appears in Pi. Its detection may occur later as
long as the value of i when this happens has an upper bound. The fact that the
SDG itself decides whether a positive basis has been found greatly simplifies
the asynchronous algorithm and enables us to incorporate the information on
steps that failed to produce (sufficient) descent, received from other workers
into the search strategy.

Algorithm 1 A SDG based on NLLS.

if |S| = 0 then

return first member of B;
end

Let columns of V be vectors x − xo

where x ∈ S, f(x) ≥ f(xo) − h, and λ ≤ ‖x − xo‖ ≤ Λ.
for i = 1, 2, ..., |B| do

obtain y by solving the NLLS problem Vy = bi;
if ‖y‖ > C‖bmax‖λ−1 ∨ ‖Vy − bi‖ > D then

return bi;
end

end

return zero vector;

Algorithm 1 represents a possible way of choosing the search direction. Let
V denote a matrix whose columns are members of P. C is a positive constant.
If C ≥ 1 the SDG generates a positive spanning set in at most |B| iterations
of the form (7). Note that iteration (7) allows for arbitrary points to be added
to set S. These points mean that some regions of the search space are already
examined and the corresponding trial steps need not be considered. So in
practise one can expect that less than |B| iterations are needed to produce a
positive spanning set.

Provided that ‖bmax‖/‖bmin‖, Λ/λ, and |P| remain bound from above and
the sequence {Bi}

∞
i=1 is not positively degenerate, the corresponding sequence

of positive spanning sets generated by the SDG cannot be positively degener-
ate. This is guaranteed by Lemma 2.9. Together with the enforced inequality
λ ≤ ‖p‖ ≤ Λ it follows that this SDG is feasible.

The number of trial steps contributed by the SDG before p = 0 is returned
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is bound from above by |B|. The time needed to complete |B| iterations of the
form (7) is finite. In a finite time a finite number of external search processes
can contribute only a finite number of points to set S and therewith a finite
number of trial steps to set P.

3 The sprouting search algorithm

Sprouting search (algorithm 2) looks for a stationary point by examining
trial points and repeatedly moving the origin of the search xo to a better
point (a point with a lower cost function value). The examined trial points
lie around the current origin. When (sufficient) descent is obtained, the origin
of the search changes. If the algorithm is parallelized every worker can have
its own search origin. By connecting the origins with the points examined
around them we obtain a picture resembling an evolving plant (thus the name
sprouting search).

The fact that the cost function value decreases with every move of the origin
is not sufficient to obtain convergence to a stationary point, except in some
special cases where the set of examined points lies on a scaled rational lattice
(PS, [6]). By taking into account certain restrictions the structure of the lattice
may even change, but it must still remain rational (GBS, [7]).

Algorithm 2 Sprouting search algorithm framework.

init: choose γ ∈ R: γ ≥ 1;
S := ∅, p := 0, xo := x0;

outer: do begin

if p = 0 then

choose H ∈ R: H > 0;
end

choose a SDG G;
choose h ∈ R: h ≥ H;
choose λ, Λ ∈ R: (0 < λ ≤ Λ) ∧ (λ/Λ ≥ γ);
let S be a subset of itself;
quit := 0;

inner: do begin

p := G(xo,S);
descent: if p 6= 0 then

xbest := xo;
if f(xo + p) < f(xo) − h then

xbest := xo + p;
quit := 1;

end
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S := S ∪ {xo + p};
end

quit := 1;
end

finite: choose F ⊂ Rn: |F| < ∞;
if |F| > 0 then

xe := arg minx∈F f(x);
strict: if f(xe) < f(xo) − h then

xbest := xe;
quit := 1;

relaxed: else if (quit = 1) ∧ (f(xe) < f(xbest)) then

xbest := xe;
end

Sf ⊆ {x : (x ∈ F) ∧ (f(x) ≥ f(xo) − h)};
S := S ∪ Sf ;

end

update: xo := xbest;
while quit = 0;

while stopping criteria not satisfied;

The algorithm consists of two loops. The inner loop searches for an origin xo

from where it can’t make any progress using a particular SDG G and a lower
bound H on sufficient descent h. In related work h was the stepsize control
parameter. Here however choosing the length of the step is in the domain of
the SDG so h only determines the amount of descent required from a trial
point to be accepted as the new origin. If G produces a trial step p such that
xo + p yields sufficient descent, the inner loop exits as soon as the results of
a finite search process are evaluated. The finite search process is represented
by evaluating the cost function at a set of points F . The only requirement
imposed on the finite search process is that the time from the start of the
search process to its conclusion when the cost function is evaluated for all
points from F (step ’finite’) is finished in a finite amount of time. Assuming
that every cost function evaluation takes a finite amount of time, this is also
implied by the requirement |F| < ∞.

There are two criteria for accepting the best trial point found by the finite
search process. The first one requires sufficient descent and is applied after
every failed trial step p produced by the SDG. The second one is milder and
requires only simple descent. It is applied after every successful trial step p
or when the SDG returns p = 0 meaning that a positive basis around origin
xo has been examined. If a point from F is accepted, the inner loop exits.
If the point is accepted by the sufficient descent criterion, exiting the loop
is forced by setting quit to one. In case the point is accepted by the milder
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(second) criterion, the inner loop was about to exit anyway. The first criterion
accepts a trial point xe examined by the finite search process if the sufficient
descent condition is fulfilled with regard to the origin xo. In practise this
means that it may accept points with a higher cost function value than the
one at xbest as long as the descent is sufficient with regard to the origin xo. To
avoid increases of the cost function value one can use a more strict condition
(f(xe) ≤ f(xo) − h) ∧ (f(xe) ≤ f(xbest)).

The inner loop accumulates the examined trial steps in the set S. This set is
used by the SDG to calculate the next trial step. Some trial points examined
by the finite search process also fail to satisfy the sufficient descent condition.
The set Sf represents the set of all trial steps from the current origin xo that
could be considered as failed. A subset of these failed trial steps steps is also
added to S.

The outer loop selects a SDG and constants λ, Λ, h, and H. λ and Λ set the
bounds on the region of space from where the trial points will be chosen in the
inner loop. h determines the amount of descent that is considered sufficient.
H enforces a lower bound on the amount of descent, and as it will be shown
later, is a key part of the convergence proof. After these initial steps are done
the inner loop is executed. The outer loop iterates until some point fulfilling
the stopping condition is found.

Note that at this point the description of the strategy for choosing λ, Λ,
h, and H is omitted. The requirements that this strategy must satisfy will
be explained in the following section which deals with the convergence of the
algorithm. Also omitted is the strategy for purging members from S. Such a
strategy is necessary in order to make the computations tractable.

4 Convergence

All convergence results are derived for the case when the outer loop (label
’outer’) is infinite. Throughout the proof it is assumed that the there exists
a compact set C so that Lf (x0) ⊆ C. Therefore f(x) is bounded on Lf (x0).
Since the algorithm accepts only points which decrease the cost function value
with respect to the current origin xo, all accepted points lie in this compact
set.

Lemma 4.1 Suppose that h is bound from below by H and all SDGs used in
the search process are feasible. Then the inner do-while loop’s body executes a
finite number of times before p = 0 is generated.

Proof Suppose this is not true. So the inner loop’s body executes an infinite
number of times without SDG returning p = 0. If the SDG is feasible (defini-
tion 2.11), it produces p = 0 in a finite number of iterations. So the inner loop
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must exit before the SDG returns p = 0. This can happen only if sufficient
descent is obtained, either by the trial step or by the finite search process. So
the function value decreases for at least h ≥ H every time the algorithm leaves
the inner loop. Such decreases happen infinite many times, so f(x) must de-
crease without bound, contradicting the assumption that f(x) is continuously
differentiable on a compact set. �

All changes to λ and Λ happen in the beginning of the outer loop’s body. It
directly follows from lemma 4.1 that the algorithm generates p = 0 an infinite
number of times. Let {xo

k}
∞
k=1 denote the sequence of search origins for which

p = 0 was generated, and {λk}
∞
k=1, {Λk}

∞
k=1, and {hk}

∞
k=1 the corresponding

sequence of λ, Λ, and h values.

Lemma 4.2 Suppose the algorithm generates p = 0 infinitely many times
and all SDGs used in the search process are feasible. Then provided that
limk→∞ Λk = 0 and limk→∞ hk/Λk = 0 hold, limk→∞ ‖∇f(xo

k)‖ = 0.

Proof Let the {Bk}
∞
k=1 denote the sequence of positive bases found by the

SDG that corresponds to the occurrences of p = 0. According to lemma 2.12
the corresponding sequence {Dk}

∞
k=1 and all of its subsequences have at least

one limit point and all limit points positively span Rn. Since {xo
k}

∞
k=1 lies in a

compact set, any of its subsequences also has at least one limit point. Choose
a subsequence {xo

jk
}∞k=1 that converges to xo

∞. Now from this subsequence
choose another subsequence {xo

ik
}∞k=1 for which the corresponding subsequence

{Dik
}∞k=1 converges to D∞. Since all trial steps from Bik

failed to fulfill the
sufficient descent condition with respect to the search origin xo

ik
the following

inequality applies

f(xo
ik

+ b) ≥ f(xo
ik

) − hik
∀b ∈ Bik

(9)

Let q = b/Λik
be some member of Dik

.

f(xo
ik

+ Λik
q) =

f(xo
ik

) +

∫ Λik

l=0
qT(∇f(xo

ik
+ lq) −∇f(xo

ik
) + ∇f(xo

ik
))dl =

f(xo
ik

) + Λik
qT∇f(xo

ik
) + E, ∀q ∈ Dik

. (10)

Where

E =

∫ Λik

l=0
qT (∇f(xo

ik
+ lq) −∇f(xo

ik
))dl.

Now remember that ‖q‖ is bound from above (‖q‖ = ‖b/Λik
‖ ≤ 1). From
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the assumption of continuous differentiability of f(x) over the initial level set
it follows that f(x) is uniformly continuous. In other words this means that
for any 0 ≤ l ≤ Λik

we have

‖∇f(xo
ik

+ lq) −∇f(xo
ik

)‖ ≤ M.

When Λ approaches 0, M also goes to 0.

lim
Λik

→0
M = 0.

So |E| is bound from above

|E| ≤

∫ Λik

l=0
Mdl = MΛik

. (11)

By joining (9), (10), and (11) the following relation is obtained

qT∇f(xo
ik

) + M ≥ −hik
/Λik

, ∀q ∈ Dik
.

When ik approaches ∞ the previous inequality simplifies to

qT
∞∇f(xo

∞) ≥ 0, ∀q∞ ∈ D∞.

D∞ positively spans Rn (lemma 2.12). Together with lemma 2.3 this results
in

‖∇f(xo
∞)‖ = 0.

xo
∞ was an arbitrary limit point so the last result holds for any limit point

of {xo
k}

∞
k=1. Consequently

lim
k→∞

‖∇f(xo
k)‖ = 0.

�

Theorem 4.3 Suppose that the value of H changes only when p = 0 is
generated by the SDG, limk→∞Λk = 0, and limk→∞hk/Λk = 0. Then
limk→∞ ‖∇f(xo

k)‖ = 0.

Proof The assumption on the behaviour of H together with lemma 4.1 guar-
antees that the SDG generates p = 0 an infinite number of times. If we also
take into account lemma 4.2, we obtain limk→∞ ‖∇f(xo

k)‖ = 0. �
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The last result extends the results of Coope and Price, in the sense that
the step length control is no longer directly coupled to the sufficient descent
control. Of course the step length (Λk) must still approach zero, since the algo-
rithm has to probe a sufficiently small neighborhood of xo in order to establish
that ‖∇f(xo)‖ = 0. The amount of descent (hk) which is considered sufficient,
must also approach zero, otherwise the cost function value would have to de-
scend without any lower bound. Both requirements are quite intuitive. Not
so obvious is the requirement that the amount of sufficient descent (h) must
approach zero faster than the stepsize (Λ). This requirement is fulfilled by all
direct search methods whose convergence is based on sufficient descent. It can
be found in the formulation of the frame-based methods [8], where it appears
in the form h = αΛ1+β , α, β > 0. Lucidi and Sciandrone [9] define a function
which connects h to Λ (h = o(Λ)). The function must fulfill the requirement
o(x)/x → 0 as x approaches zero. Garcia-Palomares and Rodriguez [10] define
a class of direct search methods with a sufficient descent requirement and also
use a similar formulation.

The advantage of the above described framework becomes evident when one
tries to use it for defining asynchronous parallel direct search optimization
algorithms. The next section addresses the issues associated with it.

5 Parallel asynchronous algorithm

The previous section establishes the convergence of the algorithms conforming
to the framework of algorithm 2 (sprouting search). In cases when one cost
function evaluation takes a substantial amount of time methods for dividing
the work among several processing units become attractive. As the underlying
hardware a cluster of ordinary computers (i.e. PCs) connected by a LAN can
be used. This was the case with APPS. There are several things we expect
from a parallel algorithm:

• distribution of work,

• fault tolerance, and

• run-time scalability.

Since for a particular processing unit all other processing units represent a
finite search process, the convergence theory developed in the previous section
can also be applied to the asynchronous parallel case. The limit points of the
search origin for every processing unit, executing an algorithm conforming to
the framework, are also stationary points of the cost function.
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5.1 Distribution of work

The simplest way for implementing an asynchronous parallel algorithm is to
use a toolkit like PVM [30]. PVM takes care of collecting messages from
and sending messages to processes on different computers. When the pro-
gram needs to respond to all past messages it simply reads them out from its
input queue and processes them. PVM takes care that all incoming messages
go to the input queue of the process and that no message gets lost. If there is
no need for stopping an ongoing CF evaluation as a response to an incoming
message (like in APPS) there is no need for a worker to have multiple paral-
lel paths of execution (multiple OS threads or processes). On the other hand
when a worker finishes a CF evaluation the obtained result is immediately
broadcasted to other workers in form of a message. Every received point can
be treated as a result obtained by some finite search process.

The finite search process and the processing of received messages takes place
after every trial step evaluation. The requirements that have to be fulfilled by
the results obtained from the finite search process in order to be accepted,
depend on the state the search is currently in. They are milder (simple descent)
when the inner loop is about to terminate. This resembles the FBS except that
FBS has two finite search processes, one in the inner and one in the outer loop
of the algorithm.

Nothing was said about the finite search process except that it must termi-
nate in a finite amount of time. It would of course be of advantage if the finite
search process was capable of using the information from received messages to
help guide its own decisions. Furthermore, the finite search process could also
produce and send out messages to notify other processing units of its progress
even before it is finished. In the presented convergence analysis no limitation
is imposed on the way the finite search uses the received result messages or
produces new outgoing result messages, except that the number of produced
messages must remain finite.

5.2 Fault tolerance and scalability

Since all processing units are capable of finding a minimum on their own,
failures of processing units don’t prevent the cluster from progressing toward
a local minimum of the cost function. As long as there is at least one processing
unit, the progress of the search is guaranteed. Of course it can be expected that
the time needed to find a minimum increases when the number of processing
units participating in the search decreases. The presented framework has built-
in fault tolerance. Any algorithm conforming to the framework will exhibit
fault tolerance in the sense that failures of individual processing units can’t
stop the system from progressing toward a solution.
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A further advantage of the presented framework is its capability to change
the number of processing units while the search is in progress. All processing
units keep a local list of cluster members (member addresses). There are two
operations that are performed on this list.

• When a failure of an individual processing unit is detected (i.e. when an
exception is detected) the respective processing unit’s address is deleted
from the local list of cluster members.

• When a notification of the presence of a new processing unit is received, the
respective processing unit is added to the local list.

5.3 Heterogeneous distributed algorithms and hybrid algorithms

The loose requirements imposed on the finite search process do not prohibit
the use of heterogeneous distributed algorithms. By heterogeneous distributed
algorithms we mean that different processing units execute different search
algorithms. As long as we have at least one cluster member executing an al-
gorithm conforming to the framework presented in this paper, the sequence
of points examined in the inner loop of the algorithm will have at least one
cluster point and every cluster point will be a stationary point of the cost
function f(x). One can for instance have a couple of workers executing some
global search algorithm (e.g. simulated annealing or genetic algorithm) which
occasionally incorporates points received from other workers into its popula-
tion. The rest of the cluster executes an algorithm conforming to the presented
framework and refines the results obtained by the global search.

On the other hand an algorithm conforming to the framework of algorithm
2 doesn’t have to obtain the points in set F solely from other processing
units. When it comes to the evaluation of the set, it can add points to it by
running any finite process. This enables us to incorporate existing optimization
algorithms into the framework of algorithm 2 thus producing hybrid algorithms
like [13,14].

5.4 Comparison with other asynchronous direct search algorithms

To our best knowledge only APPS qualifies in this category. APPS achieves
fault tolerance by distributing the search directions among workers. Every
worker handles one direction of the search. The cluster of computers is capable
of finding a local minimum as long as the set of directions searched by the
workers positively spans Rn. APPS constantly checks whether the failed steps
form a positive basis. Adapting the search directions to the cost function is
not simple since it requires a large amount of coordination between individual
workers. Scalability is not mentioned in any of the papers describing APPS.
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In the presented sprouting search framework the notion of a SDG is intro-
duced, which stands for both choosing consecutive directions that positively
span Rn, and adapting the search step size to the local function behaviour.
Furthermore due to mild restrictions imposed on the SDG, it is possible to
incorporate approximate gradient information in the search. The gradient can
be approximated by using for instance the simplex gradient approach (see [31]
or [32]). The obtained gradient approximation can then be used to allign the
set of directions generated by the SDG, it may be used to conduct a line
search in the finite search process, or it may also be used to update the vari-
able metric. None of these possibilities is offered by the rigid framework of
APPS.

In APPS there exists a strong connection between the number of workers
and the number of search directions. A particular worker is responsible for
searching in its designated direction. The sprouting search framework has no
such limitation. Any worker can look in any direction. The number of workers
can be smaller than the number of directions and it can even change during
the search without affecting the convergence properties of the algorithm. The
SDG of every worker is responsible for choosing the search direction in such
a way that it eventually causes the algorithm to converge. As it was shown
in the previous sections this can easily be achieved by placing some simple
restrictions on the SDGs.

Sprouting search offers a flexible framework for asynchronous parallel opti-
mization. It is completely peer-to-peer and has no centralized control. As long
as there is at least one worker in the cluster, the search continues. Even if the
cluster was divided in several disjoint clusters, every part would continue the
search on its own and would eventually reach a stationary point of the cost
function.

6 Example: hybrid simplex-sprouting algorithm.

The presented framework was tested using MATLAB (TM) [33] with the
DP [34] toolbox. The DP toolbox provides access to most of the PVM [30]
(Parallel Virtual Machine) functionality from within MATLAB. The Nelder-
Mead algorithm [1] was used as the basis of the new hybrid algorithm that
was run on a cluster of 6 AMD ATHLON 2100XP computers.

Algorithm 3 A single step of the modified Nelder-Mead simplex algorithm
(without the shrink step).

Order simplex vertices so that f1
s ≤ f2

s ≤ ... ≤ fn+1
s ;

for i = 1, 2, ..., nmirr do

xc
s := 1/(n + 1 − i)

∑n+1−i
j=1 x

j
s ;
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xr
s := xc

s − γr(x
n+2−i
s − xc

s);
if f(xr

s) < f1
s then

xe
s := xc

s − γe(x
n+2−i
s − xc

s);
if f(xe

s) < f(xr
s) then

xn+2−i
s := xe

s ;
else

xn+2−i
s := xr

s;
end

else if f1
s ≤ f r

s < fn+1−i
s then

xn+2−i
s := xr

s;
else if fn+1−i

s ≤ f r
s < fn+2−i

s then

xoc
s := xc

s − γoc(x
n+2−i
s − xc

s);
if f(xoc

s ) ≤ fn+2−i
s then

xn+2−i
s := xoc

s ;
end

else if fn+2−i
s ≤ f r

s then

xic
s := xc

s − γic(x
n+2−i
s − xc

s);
if f(xic

s ) ≤ fn+2−i
s then

xn+2−i
s := xic

s ;
end

end

end

The original Nelder-Mead algorithm was modified in the sense that it moves
multiple points of simplex {x1

s , x
2
s , ...,x

n+1
s } in a single step (see algorithm 3).

If nmirr = 1 the algorithm becomes the original Nelder-Mead algorithm. Note
that there are no shrink steps in this modified algorithm. The value of the
reflection (γr), expansion (γe), inner contraction (γic), outer contraction (γoc),
and shrink (γs) coefficient is 1, 2, 0.5, −0.5, and 0.5, respectively.

For incorporating points into the simplex algorithm 4 was used. Every re-
ceived point is represented by a 3-tuple consisting of the point coordinates,
the cost function value, and point index in the sender’s simplex.

Algorithm 4 Incorporating a point into the simplex.

Let every received point be represented by a 3-tuple (x, f(x), j).
Order simplex vertices so that f1

s ≤ f2
s ≤ ... ≤ fn+1

s ;
∆ := (fn+1

s − f1
s )/n;

for i = n + 1, n, ..., 2 do

Of all the received points with j = i,
let x denote the one with the lowest f ;

if such x exists ∧ f(x) < f1
s − ∆ then
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xi
s := x;

end

end

Computers in the cluster execute the hybrid algorithm 5. At several points
in the algorithm simplex is ordered in such a manner that the cost function
values f i

s = f(xi
s) form a nondecreasing sequence. In the beginning an initial

simplex is constructed, the cost function at its vertices is evaluated, and the
corresponding 3-tuples are broadcasted. Note that the broadcasted point index
is zero, meaning that these points (when received by other computers) can
be used only in the sprouting part of the algorithm. For determining the
initial ∆ and h the simplex is first ordered. upon which h is calculated as
(fn+1

s −f1
s )/(100n). For ∆ the simplex side vectors vi

s = xi+1
s −x1

s , i = 1, 2, ..., n
are first evaluated upon which ∆ is set to 1/10 mini=1,2,...,n ‖vi

s‖.

Algorithm 5 Hybrid simplex-sprouting algorithm.

Choose initial simplex vertices {x1
s , x

2
s , ...,x

n+1
s }.

Evaluate f at simplex vertices to obtain {f1
s , f2

s , ..., fn+1
s }.

Broadcast 3-tuples (xi
s, f

i
s , 0) for i = 1, 2, ..., n + 1.

Choose initial ∆ and h, clear the set of received 3-tuples.
while f > fstop do

do

fmax1
s := maxi f

i
s ;

Perform one simplex step (algorithm 3).
fmax2
s := maxi f

i
s ;

Broadcast evaluated points as 3-tuples.
if fmax2

s − fmax1
s ≤ −h then

Incorporate received points into the simplex (algorithm 4).
Clear the set of received 3-tuples.

end

while fmax2
s − fmax1

s ≤ −h;
Order simplex vertices so that f1

s ≤ f2
s ≤ ... ≤ fn+1

s ;
xo := x1

s ;
Calculate linear basis BL based on current simplex shape.
S := {x2

s , x
3
s , ...,x

n+1
s }; B := BL ∪ −BL;

exit := 0;
while exit 6= 1 do

Add points from the set of received 3-tuples to set S.
Clear the set of received 3-tuples.
xmin := minx∈S f(x);
Clean up set S.
if f(xmin) − f(xo) ≤ −h then
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x1
s := xmin;

exit := 1;
else

p = G(xo,S).
if p 6= 0 then

if f(xo + p) − f(xo) ≤ −h then

x1
s := xmin;

exit := 1;
else

S := S ∪ {xo + p};
end

Broadcast 3-tuple (xo + p, f(xo + p), 0).
else

BL := γsBL; ∆ := γs∆; h := (γs)
νh;

Replace simplex with {xo} ∪ xo + BL or {xo} ∪ xo − BL.
Broadcast 3-tuples (xi

s, f
i
s , 0) for i = 1, 2, ..., n + 1.

exit := 1;
end

end

end

end

In the main loop every pass of algorithm 3 is followed by the broadcasting
of the examined points to other workers. The broadcasted point index is the
index of the point that was moved by the modified simplex algorithm (n+2−i
in algorithm 3). If algorithm 3 decreases the highest cost function value in the
simplex by at least h (sufficient descent) the points from the received 3-tuples
are incorporated into the simplex (algorithm 4). If not, the sprouting part of
the algorithm is entered.

In the sprouting part of the algorithm the simplex is first ordered and its
n side vectors (vi

s) are evaluated. The side vectors are ordered so that v1
s is

the longest and vn
s the shortest side vector. A matrix V = [v1

sv
2
s ...v

n
s ] with

simplex side vectors for columns is formed and decomposed by means of QR
decomposition (V = QR). Reshaped side vectors are obtained from diagonal
elements Rii of matrix R and columns qi of matrix Q using the following
formula: qisign(Rii)max(1.1∆, min(|Rii|, 0.9 ·1014∆)). If Rii is zero, sign(Rii)
is considered to be 1. BL denotes the set of reshaped side vectors. A similar
reshape procedure was used by Byatt [14] in his convergent variant of the
Nelder-Mead simplex algorithm.

Positive basis B = BL ∪−BL is used by the SDG. The best point of the sim-
plex (x1

s ) is the origin xo. Before the SDG loop is entered, S is cleaned up. All
points that produce sufficient descent with respect to the origin are removed.
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The remaining points are transformed to linear basis BL. The SDG operates in
this basis. Points whose squared sum of coordinate distances from the origin
in this new basis is below 0.25 or above 4 are also removed. Effectively this
keeps only points positioned between two ellipsoids around the origin.

In the beginning of the SDG loop the received 3-tuples are checked if they
contain a point that improves the cost function at the origin by more than h.
If such a point exists the best point of the simplex (x1

s ) is replaced by it and
the algorithm returns to the Nelder-Mead part. If not the SDG generates a
search direction p.

If p is a nonzero vector, the cost function is evaluated at xo +p. If sufficient
descent is obtained (with respect to xo), the point replaces the best point of
the simplex (x1

s ) and the algorithm returns back to the Nelder-Mead part. If
not, xo + p is added to S. In both cases the 3-tuple (xo + p, f(xo + p), 0) is
broadcasted to other computers.

If however the SDG returns a zero vector, the basis BL shrinks by γs. ∆ and h
are also updated (ν = 2). Two candidate simplices are generated: {xo}∪xo+BL

and {xo}∪xo−BL. The simplex with the lowest cost function value (excluding
the one at xo) is chosen as the new simplex. 3-tuples representing the points
of this simplex are broadcasted to other computers and the algorithm returns
to the Nelder-Mead part.

It is worth noting that the SDG works with vectors expressed in linear basis
BL. The corresponding condition in algorithm 1 is ‖y‖ > C ∨‖Vy−bi‖ > D
(C = 10, D = 10−3). In our case λ = 0.5, Λ = 2, and ‖bmax‖ = ‖bmin‖ = 1 so
the simplification makes sense. The second part of the condition ensures that
the basis direction bi is returned as p if it can’t be expressed in the NLLS
sense with vectors from set S − xo (within sufficient accuracy prescribed by
D).

For numerical testing the algorithm was run 10 times for every combination
of a test function and a number of processing units. Functions from [35] and [36]
were used. The initial simplex was chosen to comprise the initial point x0 and
n additional random points chosen from a box around the initial point. The
box size was 0.05‖x0‖ (0.00025 if ‖x0‖ was 0). The number of mirrored points
was nmirr = ⌈min(n, p)/2⌉ where p was the number of workers. The effect of
varying CF evaluation time, that causes the synchronous algorithms to waste
a lot of time at synchronisation points, was emphasized by adding a random
delay after every CF evaluation.

In order to ensure that the results obtained with different numbers of com-
puters are comparable, the initial simplices for individual computers were cho-
sen in the following manner. For a particular test function and a particular
run (out of the 10 runs tried) simplices A1,A2, ...,Ap were used for computers
1, 2, ..., p. If the run was performed with one computer, only A1 was used in the
optimization. If the run was performed with two computers, simplices A1 and
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Table 1. Timing results for an algorithm conforming to the framework

of algorithm 3. Simulation was stopped after fstop was reached. Values

for p = 1 are in seconds, whereas other values represent speedups.

Test function n fstop p = 1 p = 2 p = 4 p = 6

trid 4 10−6 12.1 1.45 1.85 1.93
band 4 10−6 12.6 1.44 1.68 1.95
chebyquad 4 10−6 18.8 1.34 1.47 1.60
sing 4 10−6 28.0 1.50 2.60 3.13
trig 4 10−12 17.2 1.26 1.70 1.78
vardim 4 10−6 30.6 1.64 2.62 2.89
fminsurf 16 10−3 117.1 1.41 2.38 3.05
gulf 3 10−6 23.2 1.28 2.29 2.69
morebv 10 10−6 66.9 1.54 2.50 3.20
osbornea 5 10−10 88.1 1.27 1.82 2.01
osborneb 11 10−7 350.3 1.57 3.40 4.52
yfitu 3 10−6 31.5 1.37 1.47 1.76
meyer3 3 10−4 158.6 1.23 1.27 1.52
helix 3 10−12 25.7 1.51 2.09 2.15
quadratic 8 10−6 33.4 1.31 2.02 2.27
quadratic 16 10−6 97.6 1.30 1.91 2.32
almost 7 10−6 117.6 2.32 4.40 5.87
almost 15 10−6 1070.7 1.70 5.68 9.41
rosex 8 10−6 270.3 1.50 3.23 4.52
rosex 16 10−6 1160.6 1.23 2.61 3.59
vardim 8 10−6 332.2 2.08 6.32 7.96
singx 8 10−6 173.2 1.64 3.72 4.55
singx 16 10−6 644.9 1.42 2.90 3.69
palmer1c 8 10−7 551.8 1.20 3.87 5.08
palmer1d 7 10−6 286.1 1.24 3.32 3.95
palmer2c 8 10−7 523.1 1.10 3.92 5.29
palmer3c 8 10−7 525.5 1.38 4.24 5.48

A2 were used (one for every computer), etc. Optimization was stopped when
a particular cost function value (fstop) was reached. The run was also stopped
if the amount of sufficient descent became less than 10−14 mini=1,2,...,n+1 |f

i
s |.

The average run time for the runs that reached the target cost is listed in table
1.

From table 1 it can be seen that the speedup depends on the problem. In
all cases a speedup was obtained that increased with the growing number of
workers. There were only a few failed runs. Failures were observed with the
osborneb test function (one for p = 1 and p = 2, and two for p = 4) and with
the palmer1c function (one for p = 1). No failures were observed with p = 6
workers.

In order to demonstrate the scalability and fault tolerance of the parallel
algorithm the following experiment was performed. After the cost function
comes halfway from the value at the starting point toward fstop the number
of active workers is suddenly decreased from six to three (or increased from
three to six). Table 2 lists the results of the experiment averaged across 10
runs for four different test functions.
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Table 2. Timing results (in seconds) for adding/removing processing units

from the cluster while optimization is in progress.

Test function n fstop p = 6 p : 6 → 3 p = 3 p : 3 → 6

quadratic 8 10−16 39.8 43.9 49.2 48.7
rosex 8 10−16 114.1 144.8 191.2 172.4
vardim 8 10−16 84.6 96.8 114.0 110.6
singx 8 10−16 101.8 160.7 189.5 136.9

The values in the fourth column of table 2 represent the timing results for 6
workers working in parallel. The fifth column represents the timing results for
the case when half of the workers leave the cluster as the cost function comes
halfway toward its final value. As it can be seen from the table the final value
is reached, but it takes more time to reach it.

The seventh column of table 2 represents the case when the number of
workers increases from three to six as the cost function comes halfway toward
its final value. In this case the timing results from the seventh column are
better than those from the sixth column (that represent the average timing
for p = 3). The improvement is however not as big as is the drawback when
the number of workers decreases from six to three. This can be explained by
the fact that a worker leaving the cluster has immediate effect on the speed of
progress, but a worker that joins the cluster must first adapt to the situation
the search is currently in, and thus its effect is not immediate.

7 Conclusion

The sprouting search framework for (asynchronous parallel) direct search was
presented. The notion of a search direction generator, generalizing the process
of choosing a trial step, was introduced. A proof of framework’s convergence
under mild assumptions for continuously differentiable cost functions with
compact level sets was presented. The finiteness of the inner loop is guaranteed
by the sufficient descent condition and the finite number of iterations needed
for a feasible search direction generator to produce a positive spanning set.
In the framework the trial step size control is decoupled from the sufficient
descent control. The only requirement is that the amount of sufficient descent
approaches zero faster than the trial step size.

The framework is very flexible and within its boundaries one can define a
wide variety of different asynchronous parallel optimization algorithms. Such
algorithms are especially well suited for clusters of workstations. Fault tol-
erance is built into the framework in the sense that failures of individual
processing units can’t stop the algorithm from progressing toward a solution.
Another benefit is the framework’s capability to change the number of process-
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ing units while the search is in progress. The limit points for every processing
unit executing an algorithm conforming to the aforementioned framework are
also stationary points of the cost function.

The framework’s generality enables us to build heterogeneous clusters of
workers where workers execute different algorithms and exchange points. As
long as there is at least one worker running a sprouting search algorithm, that
worker will exhibit convergence and by point exchange force other workers
to converge too. Furthermore it is possible to construct hybrid algorithms
consisting of sprouting search and some well established algorithm that may
even lack convergence theory. The theoretical proofs for the sprouting search
algorithm also holds for the hybrid algorithm.

The above mentioned properties were demonstrated by constructing a hy-
brid algorithm with Nelder-Mead simplex algorithm for its basis. Speedup was
demonstrated by running the algorithm on several test problems and with dif-
ferent numbers of workers in the cluster. Fault tolerance and dynamic cluster
sizing were demonstrated by removing and adding workers to the cluster while
the search was in progress. In both cases the algorithm was capable of reach-
ing the prescribed accuracy in spite of failures and changes in the cluster. The
timing results also confirmed the expected effect of adding (removing) workers
to (from) the cluster.
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