
A PSD Based HC11 Microcontroller Development Board:
Building on Past Experience

Andrej Nussdorfer, Tadej Tuma, Iztok Fajfar, Janez Puhan, Arpad Bürmen
University of Ljubljana

Faculty of Electrical Engineering
Tržaška 25, 1000 Ljubljana, Slovenia

Phone: +38614768724
E-Mail: andrej.nussdorfer@fe.uni-lj.si

1. Abstract

The success of the educational process of teaching
microcontroller programming is greatly improved by the
possibility of the students having individual access to the
prototyping system and experimenting with it. While low cost
microcontroller development boards are widely available, they
do not offer the possibility of debugging the code directly on the
target system. The usual approach to this problem would be a
prototyping board and a processor emulator. During the past
decade we have employed two different strategies to overcome
this problem. In this paper we present the sum of our past
experiences and discuss a new approach that we intend to use in
the future.

2. Introduction

A modern microcontroller programming workstation
consists of a PC, a microcontroller prototyping board, a
processor emulator to debug the code, and respective software.

While this combination offers a reasonable
price/flexibility ratio it is usually too expensive to equip a large
laboratory with, especially when considering the lifetimes of the
processor emulator systems, which are considerably shortened
because of long operation times and student mishandling.

This and the complexity of the commercial processor
emulators led to the development of a custom development
system based on the popular 6803 microcontroller [1,2]. The
first system was developed back in 1993 and it served its
purpose well up to 1999, when it was replaced with a
modernized system based on the MC68HC11 microcontroller
[3]. Both systems are available to the students that want to have
their own development board. While the latter system is still
relatively new, we are already researching a possible substitute,
based on the MC68HC11 and Waferscale PSDs . In this paper
we outline the planned capabilities of the researched system.
For the discussion to be more clear we briefly describe both
existent systems.

3. The early work

The first system was developed back in 1993 (figure
3)[1,2]. A "virtual processor" approach is used to execute single
instructions. The basic philosophy of this approach is a
"simulation RAM". This is a small piece of RAM where the
instruction to be stepped is copied along with all its operands. A

jump back to the BIOS is placed after the instruction so that the
BIOS can copy the contents of all the CPU registers in RAM.

This way, almost all the instructions can be executed and
then the contents of the CPU dumped, with the exception of
jumps and branches, which are simulated by the BIOS. While it
does not feature a true RUN/STOP mode, this system can
"animate" the program, sequentially executing as many
instructions as we like, displaying the contents of the CPU
registers after each executed instruction.

A very useful feature of this system is its ability to handle
external interrupts, which are serviced in real time without
hindering the BIOS in any way. The user communicates with
the BIOS via a simple VT-100 terminal (figure 1), thus enabling
almost any computer with an RS-232 port to be used in the
debugging process.

Figure 1: The early system – block diagram of the
stepping algorithm

The instruction set of the debugger is very simple, only 4
instructions are used to debug the code:

T[num] sequentially executes num instructions of code,
tracing into subroutines. All the CPU registers are
dumped on the screen after every executed instruction

P[num] sequentially executes num instructions but steps
over subroutines, which run at the full CPU speed. The
contents of the CPU registers are also dumped on the
screen after every instruction

R[num] behaves like P[num], but the CPU registers are
dumped only after the last instruction is executed

D[addr] dumps on the screen the contents of 256 bytes of
RAM after the addr address

This system proved extremely efficient, considering that
no additional hardware is needed to debug the code, only
approximately 3kB of memory space is used. It was also very
well accepted by the students, who showed a much improved
interest in the field of microcontroller programming, which is
probably the best indicator of its usefulness.

.T1
E490:BD(JSR) E4 A2 T=0015 >> A=C3 B=37 X=E000 S=3FFD P=E4A2 F=H0N000
.P3
E4A2:86(LDAA #) 14 T=0017 >> A=14 B=37 X=E000 S=3FFD O=E4A4 F=H00000
E4A4:CE(LDX #) 20 6F T=001A >> A=14 B=37 X=206F S=3FFD O=E4A7 F=H00000
E4A4:CE(JSR) E3 B8 T=0020 >> Dobro jutro!! A=14 B=0D X=206F S=3FFD O=E4AA F=H00000
.D2060
2060 : 66 72 6F 21 21 0D 20 6A 75 74 20 66 F7 FF FF 44 = fro!!. jut f...D
2070 : 6F 62 72 6F 20 6A 75 74 72 6F 21 21 00 F7 BF FF = obro jutro!!....
2080 : FF EF FF FB 49 42 0D FB FF 7F FF DF F9 3B 20 FF =IB.......; .
2090 : FF FF FF FF AB 69 65 FF FF FF FF FF 00 1A D8 FF =ie.........

Figure 2: An example of the communication between the user and the development system BIOS

4. An improved system
The first system has some clear advantages, but it shows

some minor flaws too, especially the awkward user interface.
Thus we decided that a new system should be developed, using

a simpler user interface running in a Windows 95 environment
(figure 2) [3]. Apart from the implementation of a new user
interface, another method of tracing the code is used, too. A
more common approach using SWI instructions as breakpoints
is implemented.

This approach has the advantage of not needing to copy
anything. While the earlier system has to copy an instruction to
the simulation RAM, with this method only a SWI is placed
behind the instruction to be stepped and the program counter
adjusted to point to that instruction. The SWI then handles
everything else – it dumps all of the CPU registers on the stack,
jumps to the service routine which acts as BIOS, and after
setting another SWI breakpoint and some tweaking of the stack
it returns to the next instruction to be stepped. Another
advantage of the system is that before a breakpoint the program
runs at the full CPU speed. This system also features a true
RUN/STOP mode. The RUN is accomplished by clearing all
breakpoints (SWIs) and letting the CPU to execute the first
instruction of the user code. The STOP is implemented with an
XIRQ interrupt.

Like the earlier, this system was also welcomed by the
students, especially because of the easy to use interface. At the
same time some feedback came from the industry too, where

some former students used the microcontroller boards as real-
time control systems. It was there that the development system
showed its most severe shortcoming, the inability to trace a
program with interrupts enabled. Since this system was
developed
primarily for educational purposes this shortcoming wasn't
considered critical.

Another shortcoming of the system is the method of
tracing it utilizes. A disadvantage of this approach is that the
code to be traced must reside in RAM. Once the code is burned
in read-only memory, the system is not able to trace it anymore.

5. Upgrading the hardware

The reason for such a prompt replacement of the
development board lies in the complexity of the board itself and

Figure 3: The current system – block diagram of the stepping algorithm

the appearance of PSD9xx and PSD8xx devices by Waferscale
(now a division of ST). The board was designed with cost-
effectiveness in mind so standard LSI logic was used instead of
programmable devices like PALs. While the board is still
relatively simple compared to professional microcontroller
boards, it is still quite complex for the average student to build.

A large number of components poses a serious problem
for the inexperienced students that want to build their own
boards. More components also mean more parts that can break,
making it more difficult to repair the boards. That, combined
with the introduction of the advanced PSD chips by ST, made
us consider the possibility of designing a new development
board. With the implementation of the PSD chips the
development board could shrink to half the size of the current
board with virtually no components besides the M68HC11, the
PSD chip, the voltage regulator, and the RS232 level shifter.
And less components also mean better reliability.

6. Playing mother nature

As already mentioned, the current development system
dynamically replaces instructions with SWIs to achieve single
stepping. While this system works fine as long as the code to be
traced is stored in RAM, it fails completely if the code is stored

in FLASH, as is the case when using the PSD chips. This forced
us to redesign the software too. Since we already had two
working development systems, a comparison between them
seemed the most reasonable thing to do first. Here is the
comparison:

The early system:

Advantages:
- all the overhead is executed on the board itself,

minimizing the needed communication between the board
and the host PC

- it is possible to single-step code resident in read-only
memory, like FLASH or EPROM

- this system allows interrupts to occur without hindering
the tracing algorithm

- the interrupt subroutines run at the full CPU speed
- so do normal subroutines when stepped over

Disadvantages:
- the BIOS is quite large (approximately 3kB)
- the 68HC11 internal RAM is used by the BIOS
- the user interface is somewhat awkward, because of the

use of a standard VT-100 terminal mode
- breakpoints are not supported very well

Figure 4: A screenshot of the current system user interface

- it cannot execute a number of instructions at full speed
and then halt

The current system

Advantages:
- the BIOS on the board is very compact, since all the

overhead is executed on the host PC
- the user interface is easy to use
- it has a very efficient system of breakpoints
- before encountering a breakpoint the code runs at the full

CPU speed
- it features a robust communication protocol between the

development board and the host PC

Disadvantages:
- the breakpoints are implemented with SWI instructions,

effectively disabling the system to trace a program with
interrupts enabled

- the code to be traced must reside in RAM

After analyzing the characteristics of both existing
development systems we decided that a cross-breeding of both
systems would yield an efficient and user friendly development
system. We decided to use the graphic user interface and
communication protocol from the current system and the
stepping strategy from the early system. Thus the characteristics
of the proposed system are:

- the development board is very compact
- the use of a PSD device greatly improves the functionality

of the board while minimizing the required number of
components

- there is up to 288kB of FLASH RAM for the code and
8kB of SRAM

- the BIOS on the development board is very compact
- all the required overhead is kept on the host PC
- the user interface is easy to use even for inexperienced

students
- a robust communication protocol between the board and

the host PC
- all the communication between the host PC and the board

is carried via the standard RS-232 port
- the serial communication protocol enables remote

debugging
- code residing in read-only memory is traceable
- interrupts are allowed
- interrupt routines are executed at the full CPU speed
- normal subroutines are also executed at full speed when

stepped over

Clearly, some of the biggest advantages of the current
system are lost due to the changed stepping algorithm, but the
added functionality, especially the availability of interrupts and
the ability to trace code in read-only memory, largely
overweight the loss. As the main reason for the researching a
new system lied in the inability of the current system to trace
code residing in FLASH, the possibility to trace code with
interrupts enabled encouraged us even more. Since all the

communication between the board and the host PC is carried
over a serial channel it would be possible to extend the distance
between them by sending and receiving data over the IP.
Although it would present some major security[4] and reliability
problems it would be interesting nonetheless.

The system thus obtained will not only be applicable to
development boards using FLASH program memory, but will
also be useful for professional code developers working on real
time problems often including interrupts.

7. Conclusion

The research into a new development system was
prompted by the release of the PSD devices. Since we are
always on the lookout for new technologies, taking such a step
was inevitable. We believe that the proposed system is more
than a suitable replacement for the existing one. While first
meant only as an educational tool, with the described
characteristics it could also be an efficient and cost effective
development system for professional users. Already the first
two development systems found their way out of the
microcontroller classes into real-world applications. With the
experience gained over the past years we are quite confident
that the new system will be greeted with at least the same
enthusiasm.

8. References

[1] Tadej Tuma, Franc Bratkovič, Iztok Fajfar and Janez
Puhan, "A Microcontroller Laboratory for Electrical
Engineering", Int. J. Engng Ed. Vol. 14, No. 4, p. 289-293,
1998

[2] Tadej Tuma, Iztok Fajfar, Janez Puhan, "The Principle of
Vaccination in Teaching", Frontiers in Education
Conference '99, San Juan, Puerto Rico, 1999

[3] Tadej Tuma, Iztok Fajfar, Janez Puhan, Arpad
Bűrmen, "A Non-Virtual Distance Education Course
in Software Engineering", International Conference
on Information Technology Based Higher Education
and Training, Istanbul, Turkey, p. 287-292, July 2000

[4] Sašo Tomažič, "Secure communications over the
Internet", The European journal of teleworking, Vol.
4, no. 1 (Spring 1996), p. 6-13

