
A New Curriculum for Teaching Embedded
Systems at the University of Ljubljana

Tadej Tuma and Iztok Fajfar
University in Ljubljana

Faculty of Electrical Engineering
Tržaška 25, 1000 Ljubljana, Slovenia, EU

Email: tadej.tuma@fe.uni-lj.si, iztok.fajfar@fe.uni-lj.si

Abstract— In recent years the population enrolling university
studies in Europe has topped 50%. At the same time we are
witnessing an ever faster technological development in the area
of embedded systems. All these changes called for an urgent
response to make the teaching of embedded systems more
attractive and affordable to a wider population. As a result we
have completely redesigned our curriculum. Not only have we
utilized new technology, we have changed the entire approach to
teaching.

In the past we started with assembly language, which we
considered basic, and only later moved to embedded C. From
a motivational point of view this was not ideal, since the gap
between the assembly language and the students’ pre-university
computer experiences, which mainly involve using Windows-
like applications and Internet, was getting too wide. Higher
computer languages were taught in parallel without an immediate
connection to embedded systems.

Our new set of courses starts out with JavaScript, which feels
very much like C, is free, and motivationally proved an instant
success. Next comes the transition to embedded C which is now
much less painful and the assembly language level is left for
special courses in later semesters, addressing specific hardware
issues.

As for hardware platforms, we wanted students to have
their personal powerful embedded development system, whose
price should not exceed an average textbook. Since professional
embedded development systems are far from being cheap, at
first that sounded a bit unrealistic. However, we came up with
a special concept, which attracted sponsors from industry, so we
could raise the necessary funds.

Most courses related to embedded systems now use the
same platform with only different add-on boards, which further
reduces the per-system price and getting-started overhead. Since
the students can do much of their work at home, the after hours
spend in the laboratory are less which frees our resources to
other activities.

I. INTRODUCTION

Most universities in the EU are state funded and conse-
quently their curricula need to be government approved. This
ensures a certain quality level and maintains compatibility. The
down side, however, are relatively rigid curricula, since any
major change needs to pass tedious bureaucratic procedures.
The Faculty of Electrical Engineering at the University of
Ljubljana, Slovenia [1] is no exception.

The fast developing area of embedded systems is especially
affected by the lack of curriculum flexibility. During the
past decade the contents of many courses were extended by
microcontroller related topics. However, this was done by

individual teachers without an overall concept, and only within
the approved curriculum structure. The result was a patchwork
of different microcontroller related courses on different levels.
Accordingly, laboratories were based on all sorts of hardware
platforms, so students had a lot of learning overhead to switch
back and forth between different microcontrollers. Further
more, the lack of coordination necessarily led to overlapping
course contents which further reduced the teaching efficiency.
There was also a traditionally disjoined relation between
teaching general purpose programming languages, which are
considered hardware independent, and hardware specific em-
bedded system topics.

Anticipating a major restructure according to the Bologna
declaration, which is due in a couple of years, the faculty
decided to preempt some urgently needed reforms regarding
the embedded system curriculum. Our ambition was to signifi-
cantly increase the teaching efficiency in this field and remedy
all above shortcomings. This may seem rather ambitious, but
due to the rigid nature of our curriculum structure it was now
or never. Once the enforced Bologna changes are clad in stone,
there will be no more room for major restructures.

II. SOFTWARE FLOW

What is the ideal way to introduce embedded system
programming to EE students? The answer to this question
depends very much on the time asked.

The classic approach definitely starts with the lowest hard-
ware level. The CPU registers, address bus, data bus, and
memory are discussed in connection with a basic assembly
language instruction set. Sometimes even instruction format,
execution cycles, and ALU logic would be explained by way of
introduction to microcontrollers. In other words, programming
is introduced in parallel with the executing hardware.

Two decades ago this was definitely the way to do it,
since the microprocessors of those days were very simple.
Also the limited functionality did not allow for a higher
language approach. Consequently, the debugging utilities were
simple command line based monitors. Higher programming
languages would be taught separately, mainly intended for
desktop computers and mainframes.

Today, the situation has dramatically changed. Modern mi-
crocontrollers are highly sophisticated in design and function-
ality. The development systems easily implement embedded



C, or even C++ and compilers with user friendly debugging
GUI environments. There is no need to start students off on the
assembly level. Moreover, it has become extremly difficult to
explain the complex machine level. Therefore it makes sense
to skip the registers and start at a hardware independent level
with a modern C based development system. The assembly
language appraoch is by no means superfluous, since this is
the only way to show the students what exactly is happening
on the machine level. Many times critical real time primitives
are still coded in assembly language. However, this is not
the approach for a novice any more. The assember language
approach has rather become a speciality and should be tackeled
in later courses. Having this concept in mind, it becomes also
obvious that higher languages are not to be taught separately
any longer. Instead, there should be a seamless transition from
an abstract language like JavaScript to embedded C, and only
later the hardware dependent assembly language approach
should be taken on.

So the ideal flow of contemporary EE software teaching
would roughly be an up side down version of the former flow.
At the faculty we decided to implement the following three
stage curriculum.

1) General purpose programming languages. In the first
semester the students start off on a simple C-like lan-
guage, preferably a popular web based language so
they can immediately enjoy the fruit of their labor
by designing dynamic web pages. Our choice fell on
JavaScript.

2) Embedded C programming. Already in the second
semester the students are taken to an embedded C
running on a contemporary microcontroller platform.
The transition from JavaScript to embedded C comes
natural, without going too much into hardware details.
At this stage the hardware target is little more than
a motivation factor. Some LEDs, few of buttons and
simple LCD are enough to provide incentive.

3) Embedded OS programming. After the two obligatory
courses in the core curriculum, the students choose
between several specializing curricula branches, each
with its own set of specific embedded system related
courses. These venture into hardware specifics, assem-
bly language as well as introduce real-time and multi-
tasking environments. Very importantly, most of these
courses build on the hardware platform which has been
presented in the second semester.

A. General Purpose Programming Languages

Many years’ experience with teaching computer languages
and architecture to the first-year students show some inter-
esting if not surprising results. Even though we are deal-
ing with electrical engineering students, we have observed
a considerable fear of computers on the part of students.
For many first-year students to be, the computer is simply
a tool for accessing the Internet, and playing games. The
rest is wrapped in mystery. As a consequence, trying to
teach assembly language or even higher level languages, such

as C, has proved more and more difficult through the last
half decade. For many students, already unable to grasp the
concept and sense of computer programming, a single missing
semicolon, producing unreasonable list of errors, could be a
big enough frustration to quit any further efforts altogether.

Therefore, we chose a language according to the following
criteria:

1) First steps should produce instant results with as little
chance of failure as possible. We wanted to introduce a
concept of ”speaking” to the computer in a form of a
simple text. This has proved a very important step for
many students. Without the danger of getting tangled
in different conditional and loop statements, compiler
warning and error messages, students feel free to explore
the familiar effect of an unfamiliar language.
A markup language such as XHTML proved an appro-
priate candidate for that stage.

2) Very soon students have enough nerve to try and transfer
to the computer some of the burdens of tedious typing of
XHTML tags. Producing simple tables using JavaScript
code is the next logical step. Unobligatory details such as
declaring variables and putting semicolons at the end of
statements are required by the lecturer whereas the com-
puter is more forgiving. It is a matter of debate whether
this is good or bad, but our experience has shown that
the allowed sloppiness enabled student in general to
focus more on the gist of coding, i.e. explaining the
well formed idea to the computer.

3) Also very importantly, our language should resemble C
as closely as possible, making the transition to embedded
C as seamless as possible. Again, JavaScript has proved
the best candidate.

In summary, a combination of elementary XHTML and
JavaScript formed an abstract yet practical framework for
introducing basic concepts of computer programming.

As an example let us look at a simple code fragment
producing a series of thumbnails in a browser window:

var i;
for (i = 0; i < num_thumbs; i++)
{
document.write(thumb[i]);

}

Since students are familiar with pages displaying thumb-
nails, they in general appreciate and understand the benefits
of using the for loop for producing such a page. This practical
understanding motivates students directly for the deeper study
of the logic of for loop itself.

B. Embedded C Programming

In the second semester the students plunge into embed-
ded C programming. They are already quite familiar with a
basic syntax, program control structures, concept of calling
and defining functions, and devising simple algorithms. The
semester starts with pointing out most important syntactical
differences between the languages JavaScript and C. For that



purpose we use a hardware platform with very rudimentary
input and output, and without an operating system. The most
important difference stems from the lack of the operating
system: the hardware units used need to be initialized and our
program must retain perpetual control over the system. Some
other differences we notice at that stage are the consequence
of strict typing rules of the C language.

These differences are not very difficult to grasp for the
students, and we quickly move on. Next thing they learn is
the concept of a real-time programming. The case we study is
of course the most simple and intuitive. We use polling with
the assumption that all tasks execute within the required time
slots.

Connecting external simple hardware devices such as keys,
sensors, and stepper motors is the next important step we take.
Apart from some basic physical phenomena like bouncing,
students learn that from the programmers point of view the
problem of elementary controlling of such devices is in fact
trivial.

Even more control over hardware is possible when we learn
binary coding principles and direct addressing of the hardware
registers.

The next example shows, how the problem of rotating
a stepper motor is surprisingly similar to the problem of
displaying an array of thumbnails we met in previous section:

int i;
for (i = 0; i < rot; i++)
{
outportb(switchseq[i % 4]);
delay(20);

}

One just needs to replace the array of references to thumb-
nails with the array containing a four-step switching sequence.
Due to the mechanical limitations a small delay between
switches is also required.

C. Embedded OS Programming

The curriculum at the Faculty of Electrical Engineering
in Ljubljana, Slovenia, basically consists of four common
semesters covering all fundamental EE topics followed by
several specializing curricula branches [1]. The later can be
roughly divided into four groups: Automatics, Electronics,
Power Engineering and Telecommunications. All four groups
include microcontroller based courses focusing on specific
embedded applications. Typically, these would involve systems
for control in robotics, power transmission, RF electronics, etc.
So the notion of real-time multi-task programming is intro-
duced at different levels. Either the courses discuss respective
programming techniques or they build on embedded operating
systems like µSmartX, which was developed by one of our
post graduate students, and is freely available on the web [3].

Of course all advanced courses engage students in practical
project work. So far these projects have been based on
arbitrary microcontrollers so there always was the typical

getting-started-overhead. Also, the specific expensive equip-
ment required the students to work in the laboratories on
campus. With our new approach, the overhead is almost nil.
Moreover, since the students have their own development
boards, a considerable part of the project work can be done at
home.

However, it is of utmost importance that the development
board be powerful enough and flexible enough to allow the
docking of any advanced hardware boards. This has been
achieved by an inventive concept, as explained in the following
section.

III. HARDWARE PLATFORM

We are teaching embedded system knowledge in general
but when it comes to giving students practical skills one
necessarily needs to resort to one specific microprocessor. This
is just like getting a driving license. The goal is to acquire
the skill of driving a car, any car. But you have to practice
on one specific model. Although you will drive different cars
in your life, we believe it is inefficient to switch back and
forth between different car models while still in drivig school.
With teaching embedded systems it is no different, we need
an affordable and robust workhorse to practice.

In the previous section we have already hinted at the
idea of constructing a common hardware platform for second
and third stage. The design specifications are tough. The
development system obviously needs to be very flexible in
order to accommodate simple user friendly sessions in the
second semester as well as all semi professional requirements
of higher level courses.

On top of all this we want students to have an opportunity
to buy their very own development system right from the
beginning. Using the comparison to the driving school once
more, it is clear that a student having his/her own car right
from the beginning will be higher motivated, will be able to
work after hours and will keep driving the same car after
passing the license test.

A. Development Board

Looking for an all around workhorse between contemporary
microcontrollers, we decided to take our chances with the
ARM7 core by Philips. We’re speculating that this technology
will be around for at least one decade. In order to keep cost
as low as an average textbook and still meet professional
standards we had to get sponsorship backup right from the
beginning. However, in order to attract the attention of po-
tential sponsors we had to present a faculty wide support
for the project. This was a classic chicken-and-egg situation
since the enthusiasm of participating teachers on the other
hand very much depended on the price/performance of the
development tool. After much negotiations on both sides a
strong consortium of six companies was ready to develop and
finance our new ARM7 development board.

According to the three stages identified in section II we
designed the basic development module as depicted in Fig. 1.



Fig. 1. ARM7 Development system overview.

The highlight is the integrated on-board debugging hardware
linking the ARM7 CPU to the well known professional
development environment winIDEATM by iSystem [2] which
is running on any standard personal computer. The PC is
connected via USB and is providing the necessary power
supply as well.

In this way we can offer full functionality of the entire de-
velopment system to our students. The proprietary software on
the PC is locked to the on-board debugging hardware in order
to prevent unauthorized profesional use of the system. This is
an original concept protecting the copyright of winIDEATM

and giving the students full development power at the same
time.

The development board in fig. 1 obviously has powerful
debugging capabilities but very limited input/output devices.
This is because we need to keep the initial costs as low as
possible. Remember, the system is introduced in the second
semester in support of teaching embedded C. It should provide
just basic incentive for novice students. To this end we have
included several very simple I/O devices. There are four
keys, four small LEDs, a potentiometer at an A/D input, a
general purpose opertional amplfier on a D/A output, a pair of
RS232 serial ports and the facilities to mount a standard LCD
piggyback. This is more than enough for a beginner course,
advanced level course on the other hand require specific
devices.

Fig. 2. Student’s ARM7 Development board.

To accommodate these needs we have provided respective
connectors of all CPU ports. Any number of sophisticated add-
on boards can be attached to these connectors. For minimal
interference with professional add-on equipment all on-board
I/O devices except for the serial ports can be disconnected
by jumper settings. Individual teachers are designing add-on
boards for their specific needs in smaller quantities. Senior
students are encouraged to experiment with add-ons in their
project work. Many master theses are based on development
and testing add-ons.

Optionally, an external embedded trace monitor can be
connected to a special port, enabling students to trace their
programs in real-time. This, however, requires relatively ex-
pensive additional hardware.

From a physical point of view the developemnt board is
manufacutred in SMD technology, based on a four layer 10
by 10 cm PCB as seen in Fig. 2. In front, the four buttons and
LEDs are visible. All ICs are covered by the blue plate, which
serves for protection and for sporting the sponsor logos. The
LCD piggyback is mounted over this area as well.

Thanks to our sponsors we are able to offer this board,
including USB cable and winIDEATM software to our students
at a price less than 40 EUR. In fact the presented development
board has become quite popular, so our sponsor iSystem is
now offering it world wide as their LPC2138 evaluation board
[2], demonstrating the capabilities of winIDEATM.

B. Integrated Development Environment

As mentioned in previous section, we use winIDEATM as
an Integrated Development Environment. Since the software is
locked to the on-board debugger, we are able to distribute a full
version of the environment. It turned out that students quite
appreciate the fact that they can work on a fully professional
system at home. This is a strong motivational factor for them
as well as for sponsors. They understandably expect that many
electrical engineers will want to use exactly the same software



Fig. 3. The winIDEATM integrated development environment.

in their professional life after graduation. This belief is secured
by the saying that old habits die hard.

Fig. 3 shows a running winIDEATM environment. We
can see some basic elements of the environment such as
source code and watch windows. The execution of the loaded
program has stopped at a breakpoint and the user is able to
observe the value of the variable key. The important fact is
that the program is running on the target board. After two
single steps through the code one is able to observe the third
LED lighting as the consequence of the execution of the
statement setleds(0x4); This is extremely illustrative
for an average first year student who still has difficulties
grasping the sequential cause-and-effect concept of computer
programming.

IV. FIRST EXPERIENCES

It has been almost a year since we introduced the approach
described in the paper, and we already have some qualitative
and quantitative results regarding its success. The first thing we
notice is drastical increase in students’ interest in the subject
already during the first semester. All of a sudden, out of their
own initiative, many students are seeking further explanations
and discussions on the subject even during the lecture breaks.

In exams, especially oral, where we test higher levels of
abstraction according to Bloom’s taxonomy, we noticed dras-
tically raised levels of understanding of basic concepts that we
have been teaching for more than two decades. This subjective
observation was also partially confirmed in numbers. Table I
shows percentage of students that passed the exam during the
first examination period, i.e. during the first month after the
end of the lectures, over the last five years. We observe a



Year 2001 2002 2003 2004 2005
Passed 28 33 29 34 55
(in % of total)

TABLE I
PERCENTAGE OF STUDENTS PASSING THE EXAM DURING THE FIRST

EXAMINATION PERIOD. WHEN WE INTRODUCED THE NEW CONCEPT, A

SIGNIFICANT RAISE IN SUCCESS RATE WAS OBSERVED (YEAR 2005)

drastical increase in year 2005, when our new approach was
introduced.

The results, however, are not surprising. Starting out on a
too low level, which over the past years assembly language
definitely has become, gives little motivation to the students.
The gap between their experiences of everyday life and low
level computing has simply become too wide. On the other
hand, many students, already quite familiar with Internet,
discover instant application of JavaScript in real life prob-
lems. This motivational factor is strong enough to lead many
students effortlessly through the first, and for many the most
difficult, part of learning computer programming. The next
step, embedded C programming, turned out to be a natural
sequel to the basic JavaScript programming.

V. CONCLUSION

The recent redesign of embedded systems curriculum at
the University of Ljubljana is discussed. The reorganization
is based on a three point action plan. First we aimed for
a higher language based approach, which would integrate
most microcontroller courses as well as classic hardware
independent programming. Secondly, we wanted each student
to have his/her own microcontroller development board right
from the first year in order to be better motivated and to be
able to work more efficiently. The third point was to involve
industrial partners in the project by using professional tools
and getting respective sponsorships.

The three components mutually depend on each other:
without uniting a critical mass of teachers, no sponsor could be
attracted. Without a generous sponsorship we could not offer
embedded boards for each student. Without students having
their own board throughout their studies it was not possible to
have a wide cooperation between teaches. And so the loop is
closed. In fact, the uniqueness of our new curriculum lies in
our ability to break this dead loop by implementing all three
actions simultaneously.

The new curriculum is in effect for only about a year so we
don’t have any long term feedback yet. The first experience
however, is very encouraging. The only down side we can
see so far is the fact, that our embedded system curriculum is
strategically dependent on a single microprocessor architecture
and a single development system.

ACKNOWLEDGMENT

The authors would like to thank the Ministry of Education
Science and Sport (Ministrstvo za Šolstvo, Znanost in Šport)
of the Republic of Slovenia for co-funding our research

work through program P2-0246, Algorithms and Optimization
Methods in Telecommunications.

REFERENCES

[1] Faculty of Electrical Engineering at the University of Ljubljana, Slovenia
www.fe.uni-lj.si/welcome-E.html, 2006

[2] iSystem AG www.isystem.com, 2006.
[3] µSmartX, the free real time operating system for the ARM7TDMI

platform usmartx.sourceforge.net, 2006.
[4] B. S. Bloom, Taxonomy of Educational Objectives, Handbook I: The

Cognitive Domain. New York: David McKay Co. Inc., 1956.
[5] D. R. Krathwohl, B. S. Bloom and B. M. Bertram, Taxonomy of Educa-

tional Objectives, the Classification of Educational Goals Handbook II:
Affective Domain. New York: David McKay Co. Inc., 1973.


