
A non-virtual distance education course in software engineering

Tadej Tuma, Iztok Fajfar, Janez Puhan, Arpad Bűrmen
University of Ljubljana

Faculty of electrical Engineering
Tržaška 25, 1000 Ljubljana, Slovenia

tadej.tuma@fe.uni-lj.si

Abstract
We have developed a training board based on the

popular M68HC11A1 microcontroller. The described
system is robust, inexpensive and nothing particularly
innovative. The point of difference compared to other
systems is our software: the Integrated Development
Tools (IDT) running on the PC platform (Windows
95/98/NT). In summary, our training system works
without expensive EPROM and processor emulators, yet
providing the student with almost professional
performances. There is one more advantage of our
development system: it can be downloaded from the web
free of charge.

And just how can this combination of minimal
hardware and maximal software be exploited in distance
learning? The basic idea is to supply each student with a
hardware package including a processor board, a power
supply unit and an RS232 cable. If produced in
sufficiently large numbers, the cost including shipment
should be comparable to a medium size textbook.

1. Introduction

There seems to be a contradiction in the tittle of this
paper. How can a distance education course be based on a
non-virtual concept? And why should we attempt a thing
like that? Let us answer the latter question first.

There are numerous well-known reasons speaking in
favor of distance education courses. Such courses are
inexpensive, time efficient, campus and even country
independent, to name just a few. But there is a price to
pay: all courses must be delivered virtually. This means
there is no personal contact between the students and the
teacher, and furthermore, the students have no or very
limited opportunities to do practical, laboratory work.
Both drawbacks affect the quality of distance education
and are being compensated by modern web
communications and sophisticated courseware,
simulating practical experiments on the student's
personal computer.

 We believe that even the best simulation cannot give
the students the sensation and confidence of
manipulating with real experiments. This is why we
started looking for a specific course design enabling our
off-campus students to get some hands-on experience in
developing and testing software for real-time control
problems [2]. Of course we want to improve the quality
of distance education without compromising its benefits.
So we have come up with a solution which meets the
following requirements:

1. The target micro-controller system has integrated
on-board development hardware.

2. The target / development board is connectable to any
standard Windows PC (without additional plug-in
boards).

3. The development system has semiprofessional
performances.

4. The total cost should not exceed $100.
5. The system supports hardware and software courses

as well as different levels thereof.

2. The development system

2.1. Hardware

The board is based on the popular single-chip
microcontroller family MC68HC11. We have selected the
basic model MC68HC11A1 which includes the HC11
CPU, 256 bytes of internal RAM, 512 bytes of internal
EEPROM, 8 programmable timers, an 8 channel 8-bit
A/D converter, a serial peripheral interface, and a serial
communication interface.

We have kept the additional hardware on the board to
a minimum without limiting the functionality. There is
8KB of EPROM, supporting the development system on
the PC, 8KB of program memory (RAM or pin
compatible EPROM), 8KB of data RAM and the 16 bit
parallel interface MC6821. The board has a 50-pin I/O
connector for direct controlling purposes and a 40-pin

expansion connector giving access to the system bus and
a standard serial RS323 connector attaching the system
to a personal computer. There is also a relatively strong

power supply unit, which is capable of driving peripheral
modules over the I/O connector. Figure 1 shows all the
hardware features of the basic controller board.

PA0/IC3
PA1/IC2
PA2/IC1

PA3/OC5/OC1
PA4/OC4/OC1
PA5/OC3/OC1
PA6/OC2/OC1
PA7/PAI/OC1 Pulse Accumulator

Timer
System

COP RTI

PD2/MISO
PD3/MOSI

PD4/SCK
PD5/SS

SPI

TXD
RXD SCIRS232

PE0/AN0
PE1/AN1
PE2/AN2
PE3/AN3
PE4/AN4
PE5/AN5
PE6/AN6
PE7/AN7

A/D
Converter

IRQ

Interrupt Logic

XIRQRESET

Acc A Acc B

IX

IY

SP

PC

CCR

CPU

256 Bytes RAM

512 Bytes
 EEPROM

M68HC11A1

CA1

Port
A8 Bit

Port
B8 Bit

CA2

CB1
CB2

PIA 6821

8 kBytes EPROM
BIOS

8 kBytes RAM
Program Memory

8 kBytes RAM
Data Memory

Data
Bus8 Bit

Address
Bus16 Bit

E
R/W
WE
OE

Figure 1. Hardware features of the HC11 training board

The board can be used as an independent module in
which case the BIOS EPROM is replaced with a program
EPROM, and the 8 Kbytes of program RAM is removed.
This operation mode makes the board suitable as a
general target system. However, the real value in
education is the on-board development system residing in
the BIOS EPROM.

After reset the BIOS (Basic Input Output System)
takes over and establishes a serial (standard RS232)
connection with a PC, running the IDT (Integrated
Development Tools) under Windows 95/98/NT. The
BIOS is capable of receiving machine code from the PC
and placing it into the program memory (RAM). Upon
request from the PC, the BIOS will run the downloaded
code or execute just one instruction and report back the

status of all registers. A running program can be
interrupted at any time via the RS232 link, the BIOS
gaining control and reporting the board status to the PC.
In this way the user can single step his/her program
directly on the training board with all peripheral devices
also working in “slow motion”. The communication
between the IDT on the PC and the BIOS on the training
board over the serial line is kept at the very minimum.
The BIOS is providing only the infrastructure for the
development software on the PC.

There is only one obvious disadvantage compared to
the professional EPROM and processor emulator
approach: you can’t do real-time tracing. You either
single-step your code or you run it in real-time (or a
combination of the two). This is a logical consequence of

our approach since the microcontroller cannot run the
application at normal speed and record the tracing data at
the same time. However, this drawback is not very
painful in education and even many professional
applications can be debugged and tested without real-
time tracing capabilities.

The microcontroller board in figure 1 is the central
and most crucial piece of hardware in our laboratory
work, but it is by no means the only module. You have
noticed that there are no I/O devices on the basic board.
The students plug different peripheral modules to the

expansion connector or develop their own modules,
depending on the course type.
2.2. Software

The IDT (Integrated Development Tools) is a
Windows based application coded in Visual Basic with a
friendly graphical user interface, freely available from
http://www.fe.uni-lj.si/tuma/hc11doc/hc11idt.zip. It in-
cludes just about every feature you would expect from a
professional tool. The screenshot in figure 2 is showing
off a flashy debugging session.

Figure 2. Screenshot of a debugging session with the IDT

There is a source editor, a macro assembler, a
download utility, a symbolic disassembler, a serial
terminal window, online help, and a complete debugging
system. The debugger is capable of single-stepping the
source, you can set breakpoints, watches, dump the
memory, survey all registers of the system, and inspect
the stack. All values can be displayed in hexadecimal,
decimal, octal, or binary format. You can also edit any
parameter at any time.

A very interesting option is the serial terminal
window, which works just like a virtual terminal on the
PC, communicating with the user applications on the
microcontroller board. This sounds impossible, since the
RS232 line is already occupied by the communication
between the IDT and the BIOS. We have found a way to
temporary withdraw the development communications
from the line and let the application use the PC as a
VT100 terminal. It goes without saying that a terminal
communication routine cannot be single-stepped. As
soon as the serial terminal window is active all other
windows are frozen. The serial terminal is very important
since our basic training board has no other I/O devices!

2.3. Cost considerations

As we have seen in the previous sections, our training
system works without expensive EPROM and processor
emulators, yet providing the student with semi
professional performances.

Until recently we have been using the described
microcontroller system in our campus-based courses with
occasional students assembling their own board for
additional studies or personal use. We thus required only
several dozens training systems, which we produced
ourselves at a relatively low cost. Lately however we have
been planning to employ the same development system in
a distance education course. In this case we would have
to equip each student with his own hardware, so a very
important question arises: exactly how much is “low
cost”? We have prepared a calculation in table 1, which
is valid for Slovenia and a serial production of at least
300 boards.

Table 1. A cost estimation
Item Retail price in USD
Printed circuit board 65.00 USD
RS232 cable 3.00 USD
Power supply unit 8.00 USD
Total 76.00 USD

We can expect every distance education student to
have a standard PC with excess to the Internet. Also
there are no software costs since the IDT software is
freely available on the net. A virtual engineering course
based on our training board would have to cope only with
additional hardware costs of about $76, which is
unfortunately still too much, even if we consider the
students benefit of having a functional development
system for future use. However if we could pool at least
two courses, for instance a peripheral design course and a
software engineering course [4], the additional hardware
costs per course would drop under $40, which is just
about bearable.

Having estimated a realistic cost frame, we can focus
on the most interesting part: how to design a virtual
course based on non-virtual courseware?

3. Course design

Slovenia, being a small country, has a very much
campus based higher education system. Only lately we
are venturing in the world of distance education.

Based on the described development system, we are
currently running three courses in different semesters:
“Computer Architecture”, a second year course at the
Faculty of Computer and Information Science [5, 8],
“Basic Microprocessor Systems” and “Microprocessors in
electronics”, a second and fifth year course, at the Faculty
of Electrical Engineering. We have also introduced our
system to a freshmen crash-course on basic programming
skills.

Although everything has been carefully prepared for
distance delivery, the four courses are officially run in the
traditional form. The students are however encouraged to
buy their own development board and to take the course
at their home computer. Particularly the fifth year
generations are very fond of this offer. In recent years we
had over 10% of the students built (and funded) their
own development board. Therefore let us first talk about
our on campus experiences.

3.1. On campus

In the freshmen course the development board is first
used as a portable visualization aid when explaining the
basics of microcontrollers. The lecturer is attaching a
development board to his laptop and using a screen
projector to demonstrate typical procedures inside a
microprocessor. For instance, you can single-step most
illustratively through the role of the stack during
procedure calls and their returns. Also the games of

setting and employing processor flags can be visualized
elegantly. Later, during the laboratory session the
students get their first hands-on experiences while
developing and testing simple programs to control some
LEDs and read some switches. This software crash-
course relies on the main development board from figure
1 with a simple keypad & LED display module attached
to the parallel expansion connector. The students are
given several weeks to become familiar with single
stepping and other debugging techniques.

The second year course we are offering at the Faculty
of Electrical Engineering is hardware based. The
students are designing microcontroller systems, again
with emphasis on practical work. Our development
system is used as a basic hardware platform to connect
and test different modules. In this course we make
extensive use of the 50-pin I/O expansion as well the 40-
pin system expansion. Especially the latter is very useful,
when you want your students to design decoding circuitry
without building an entire microprocessor system from
scratch.

In the fifth year we have an extensive software-
engineering course, concentrating on multitasking and
real-time programming techniques. By that time our
students are familiar with the HC11 training board,
having already taken two courses. They have enough
hardware experience and they know how to develop
assembler language programs and how to debug them
[1]. We introduce a small multitasking operating system
evolving around a simple task scheduler. After going
through some basic real-time problems, the students are
grouped into teams of 2 to 4 and are assigned projects.
The projects are carefully selected and highly
motivational [6]. A project would typically involve a
complete application well known to every lay person and
not just parts of some sophisticated application [3]. We
all know what a remote control, a credit card reader, a
railway crossing, a code lock or an elevator do. It took us
quite some time to design small toy-like models for each
application. Although this may seem a little childish the
students soon discover that controlling a toy robot
requires exactly the same approach as does controlling a
professional one.

Our way of teaching microprocessor systems is not
only rather effective but also very popular with the
students. Quite a respectable number of students also take
microcontroller systems as their diploma or master thesis
subject [7]. In fact an outstanding master’s student has
developed the presented training board and coded the
IDT. Most of our expansion boards and control models
have also been designed by graduating students. Also
many undergraduates decide to build their own board
during one of the courses, which gave us the idea to

design a distance education course based on our
development board.

3.2. Distance

The design of the HC11 based development board
including the IDT software package is actually the result
of a small evolution. We have had similar systems ten
years ago, based on the MC6803 microcontroller. The
predecessor systems were also capable of downloading
the code form the PC and single stepping it on-board, but
they had a far inferior user interface and a much more
complex hardware structure. In other words, these
systems were much more expensive and less effective to
use. In spite of these fact the earlier development boards
were very popular with the students and many of them
have asked for the specifications in order to build (and
fund) their own boards.

These experiences have directed us to the five design
criteria from the introduction. Our final aim is to deliver
a virtual course in software engineering with “real”
hands-on training. As we have shown in section 2.3, the
additional costs in case of two courses relying on the
same development system are less than $40 per course
and student. At our Faculty this is just about acceptable.

We will provide the students of the second year on-
campus course with the PCBs and all the elements and
will require them to assemble their own HC11
development systems as a final course project. This will
further reduce the costs, hopefully. After this, the
students will be able to take the following software-
engineering course at home, using online literature,
discussing problems over the Usenet and handing in
reports in HTML form.

3.3. Professional and personal use

Our experience from the past decade has shown that
enthusiastic students have used even the inferior
predecessor development systems for personal purposes.
Some of our ex-students have even continued to use the
development system in their professional environment.

We are confident that the new improved HC11 based
development system will become even more popular as a
personal and (to a limited extent) professional tool.

4. Conclusions

We have developed a semiprofessional development
system for the HC11 microcontroller. Our design works
without expensive processor and EPROM emulators.
Apart from the inability of real-time tracing we have
spared no pains writing professional development

software for the PC platform. So far the system has been
successful in our on-campus courses. In future we
gradually plan to deliver more and more off-campus
courses.

At the same time we are looking for teachers in other
institutions with more experience in distance education,
who would like to use our development system in their
courses. We believe strongly that a cooperation would be
beneficial for both parties. At the very least the
production cost of PCBs would drop if more teachers
were to use the same training boards.

5. Acknowledgements

The presented HC11 based development system has
been single-handedly designed and tested by Robert
Rostohar a remarkable master’s student in 1999. He has
well understood our exact requirement.

At this opportunity we would also like to explicitly
acknowledge the work of Tomaž Rehar (1995) and
Marijan Franc Zaletel (1993), both graduating students
who have designed the MC6803 based predecessor
systems. Without these two fine students we would have
spent a lot of money during all those years.

6. References

[1] M. C. Loui, “The Case for Assembly Language
Programming”, IEEE Transactions on Education, Vol.
31, No. 3, 1988.

[2] D. M. Auslander, C. H. Tham, Real-time Software for
Control: Program Examples in C, Prentice Hall,
Englewood Cliffs, NJ 1990.

[3] P. I. Lin, “Microcomputer Hardware/Software
Education in Electrical Engineering Technology: A
Practical Approach”, Proceedings ASEE-91, New
Orleans, LA, 1991, pp. 791-794.

[4] T. F. Leibfried, R. B. MacDonald, “Where is
Software Engineering in the Technical Spectrum
International Journal of Electrical Engineering
Education, 1992, Vol. 8, No. 6. pp. 419-426,.

[5] Michael E. Woodward, Communication and
computer networks modeling with discrete-time queues,
Pentech Press, 1993.

[6] T. Tuma, F. Bratkovič, I. Fajfar and J. Puhan, “A
Microcontroller Laboratory for Electrical Engineering,
International Journal of Electrical Engineering
Education, Manchester University Press, Oxford Road,
Manchester, 1998, Vol. 14, No. 4, pp. 289-293,
(http://www.fe.uni-lj.si/tuma/ijee1028.pdf).

[7] T. Tuma, I. Fajfar, J. Puhan, “The Principle of
Vaccination in Teaching”, Frontiers in Education
Conference '99, San Juan, Puerto Rico, 1999, pp.
11b4/16-11b4/20,
(http://www.fe.uni-lj.si/tuma/1115.pdf).

[8] T. Tuma, I. Fajfar, M. Perko, F. Bratkovič, J. Puhan,
“A Hands-on Approach to Teaching Basic OSI Reference
Model”, International Journal of Electrical Engineering
Education, Manchester University Press, Oxford Road,
Manchester, 2000, Vol. 37/2, pp. 157-166,
(http://www.fe.uni-lj.si/tuma/teachlan.pdf).

