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SUMMARY

In order to be able to take full advantage of the great application potential that lies in cellular neural networks (CNNs) we
need to have successful design and learning techniques as well. In almost any analogic CNN algorithm that performs an
image processing task, binary CNNs play an important role. We observed that all binary CNNs reported in the literature,
except for a connected component detector, exhibit monotonic dynamics. In the paper we show that the local stability
of a monotonic binary CNN represents su�cient condition for its functionality, i.e. convergence of all initial states to
the prescribed global stable equilibria. Based on this �nding, we propose a rigorous design method, which results in a
set of design constraints in the form of linear inequalities. These are obtained from simple local rules similar to that in
elementary cellular automata without having to worry about continuous dynamics of a CNN. In the end we utilize our
method to design a new CNN template for detecting holes in a 2D object. c© 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Cellular neural networks (CNNs) are non-linear, mainly locally connected, arrays of analog processors placed
on a multidimensional grid. Since their advent in the autumn of 1988,1; 2 various generalizations of the
CNN paradigm have been introduced, the most signi�cant of which is a CNN Universal Machine,3 the �rst
algorithmically programmable analog array computer on a single chip. With such a chip in hand, we hold a
great application potential but, to take full advantage of its capabilities, we need to have successful design
and learning strategies as well (see Reference 4 for an exhaustive overview of the existing design methods
and learning algorithms).
Design by analogy to well-known image processing algorithms was the �rst approach to produce some

useful networks. Amongst systematic approaches the simplest ones just try to set up a certain pattern of stable
and unstable equilibria for a particular application. Apart from some optional hints on shaping their basins of
attraction, those techniques do not guarantee that the network will be functional, i.e. that all its initial states
will converge to the prescribed global stable equilibria (see, for example, References 5 and 6). Gradient-based
methods7 �x this problem by taking into account initial states as well, or even learning prescribed trajectories.
One problem with those, however, is that they are prone to get stuck in local minima. For global learning,
simulated annealing has turned out to be the most robust tool4 for learning templates for quite a wide spectrum
of CNNs including non-linear and delay-type templates, and good solutions have been found even in di�cult
cases. Simulated annealing algorithms, however, are too expensive, in terms of computational requirements, for
some simple applications that lend themselves to an analytic approach.8 But even the approach in Reference 8
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366 I. FAJFAR ET AL.

is quite complicated since it involves estimating boundaries of continuous trajectories, and therefore requires
some knowledge about continuous time evolution of the network.
In image processing tasks, binary (see De�nition 2 in the next section) CNNs play an important role as

instructions in analogic CNN algorithms.9–12 The crucial observation that the dynamics of almost all binary
CNNs reported in the literature (connected component detector is the only known exception) is monotonic
allowed us to construct a remarkably simple, and exact, design strategy for this class of CNNs. The method
is much similar to that of setting up local rules in an elementary cellular automaton consisting of a 2D grid
of sites with values 0 or 1.
Throughout the paper we focus on a single cell located in ith row and jth column of a two-dimensional

space-invariant CNN, whose dynamics is governed by the following equations:

ẋij = −xij +
∑

Ckl∈N
�
ij

Ak−i;l−jykl +
∑

Ckl∈N
�
ij

Bk−i;l−jukl + I (1)

yij = f(xij) = 1=2(|xij + 1| − |xij − 1|) (2)

where xij, uij, and yij denote the state, input, and output of cell Cij, respectively, I is a constant current
o�set, and �, the size of the neighbourhood, is some non-negative integer. Ak−i;l−j and Bk−i;l−j are constant
feedback and feedforward template elements connecting cell Cij to Ckl. Furthermore, we assume uij to be
constant and allow Bk−i;l−j to be non-linear.
The neighbourhood of the cell Cij is the set of its nearest cells and is de�ned as

N
�
ij = {Ckl : max(|k − i|; |l− j|6�)}: (3)

In the next section we �rst introduce some de�nitions and notations that will be useful in later sections.
In Section 3 some important results on monotonic CNNs are given, and in Section 4 we propose a formal
design strategy based on these results. Finally, in Section 5, some design examples show how the method
works in practice.

2. PRELIMINARY DEFINITIONS AND NOTATIONS

Before we move to the main results let us �rst introduce some de�nitions and notations.
For the purpose of this paper it will be convenient to pack all the outputs of the cells in the neighbourhood

N
�
ij in a (2� + 1)

2-dimensional (local) vector yij, and all the constant terms in a single constant Kij =∑
Ckl∈N

�
ij
Bk−i;l−jukl + I . Then (1) assumes the form

ẋij = −xij + aTyij + Kij (4)

where the vector a represents a feedback template in a form of a vector instead of the more usual matrix
form.
Sometimes it will be handy to pack all the external inputs to a cell, and all the constant terms, in a single

time-dependent function

gij(t) =
∑

Ckl∈N
�
ij\Cij

Ak−i;l−jykl + Kij (5)

The expression Ckl ∈ N
�
ij \ Cij stands for all the cells in the neighbourhood N

�
ij of the cell Cij, except the

cell Cij itself. This time (1) becomes

ẋij = −xij + A0;0yij + gij(t) (6)
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De�nition 1. According to the three-segment piecewise-linear output function (2) we will distinguish three
regions of operation of a cell; linear region, L, where |xij|¡ 1 and ẏij = ẋij, upper saturation region, S

u,
where xij¿1 and ẏij = 0, and lower saturation region, S

l, where xij6− 1 and ẏij = 0.

De�nition 2. A CNN is called a binary CNN if all xij(0); yij(t → ∞) ∈ {−1; 1}.

Remark. It was shown in Reference 1 that A0;0 ¿ 1 represents a su�cient condition for all the stable
equilibria to lie in a saturation region, which implies binary outputs at t → ∞.

De�nition 3. We say that cell Cij of a binary CNN is locally stable at time � i�13

sgn((A0;0 − 1)yij(�) + gij(�)) = yij(�) (7)

If the cell is not locally stable, then it is locally unstable.

Remark. The above de�nition requires that, if a cell is in one of its two saturation regions, then the sign of
the time derivative of the state variable on the boundary of that region, ẋij(�)|xij=yij(�), should be equal to the
sign of yij(�). This implies that if gij does not change, then the cell stays in the same saturation region forever.

De�nition 4. Let us delete from the unit matrix U all the rows that lie at the positions of zeros in a and
denote the obtained matrix by U∗, then compute a vector Wij = U∗yij. A vector Wij will be called a local
pattern if Wij ∈ {−1; 1}n, where n is the number of non-zero elements in a.
A local pattern Wij will be called stable if the cell Cij is locally stable. Otherwise it will be called unstable.

The stable and unstable local patterns are the elements of the stable local pattern set Ps⊆{−1; 1}n and
the unstable local pattern set Pu ⊆{−1; 1}n, respectively, which are two disjoint sets of local patterns:
Ps ∩Pu = { }.

De�nition 5. Let M be a set of initial local patterns Wij(0) of a binary CNN for which ẏi;j60 (resp. ¿0)
for all i and j, and t¿0. If M 6= {}, then the network is said to be non-increasing (resp. non-decreasing) in
M, or simply monotonic.

Remark. For practical reasons M will consist only of those local patterns that can appear as a part of any
possible initial state in a particular application.

Note that De�nition 5 does not require dynamics to be monotonic everywhere in a state space but only
in linear region. In general, a monotonic CNN can exhibit an arbitrary dynamics in saturation regions (e.g.
shadow detector or hole �ller).

3. MONOTONIC CNNs

A class of monotonic CNNs de�ned in the previous section has a property that all cells can change their
output values only in a single direction. They can change their value either only from black to white (i.e.
from 1 to −1) or only from white to black. The purpose of this section is to state a simple condition under
which one can easily �nd out whether network dynamics will be monotonic or not, and to prove that for such
networks stability of local patterns is a su�cient condition for the network to be functional. By functional
we mean that the network is guaranteed to lead any possible initial state to the prescribed stable equilibrium.

Remark. In this and the next section we will limit ourselves to non-increasing CNNs, and everything we
will say for them applies for non-decreasing networks as well, which can be seen by simply changing some
signs and inequalities to their opposites.
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Theorem 1. If all the o�-centre feedback elements of a binary CNN are non-negative, A0;0¿1, and M is
such that for all Wij(0) ∈ M the corresponding derivatives ẏij(0

+)6 0;† then the CNN is non-increasing in
M (or monotonic).

Proof. Consider a non-saturated cell Cij and a derivative of its output ẏij = (dyij=dxij)ẋij = (A0;0− 1)xij(t)+
gij(t). Suppose that at some time tm all the derivatives ẏkl6=ij60, and ẋij ¡ 0. Because A0;0 ¿ 1, and since
all the o�-centre feedback coe�cients are non-negative, the signs of the derivatives remains the same as long
as no cell changes its operation from saturated to linear region, or vice versa.
Suppose that at time tm+1 one or more cells change its operation mode, and we only have to prove

that no cell can switch from Sl to L, in which case the cell would produce a positive output derivative.
Since for tm6t ¡ tm+1gij(t) is a non-increasing continuous function of time (cf. equation (5)) we have
gij(tm+1)6gij(tm). Hence, the derivative at the lower boundary of L is ẏij(tm+1)|xij=−1+ = ẋij(tm+1)|xij=−1+ =
(−1+)(A0;0 − 1) + gij(tm+1)6(−1+)(A0;0 − 1) + gij(tm) = ẋij(tm)|xij=−1+ = ẏij(tm)|xij=−1+60:‡
We just showed that at the time tm+1 no output derivative ẏij ¿ 0 can emerge, hence, by applying the

proof recursively with t0 = 0+ and m = 0; : : : ; k; yij(tk+1) = yij(t → ∞) for all i and j, we prove Theorem 1.

Corollary 1. If the stability of initial local patterns Wij(0) ∈ M of monotonic binary CNN is preserved
as one varies the network parameters; and the o�-centre feedback elements remain non-negative, then the
CNN remains monotonic.

Proof. If the stability of initial local patterns is preserved, then no new unstable initial local pattern can
emerge. That implies that the signs of all ẏij at time t0 = 0 for every possible Wij(0) ∈ M remain non-
positive.

Before we can develop a formal design strategy for monotonic binary CNNs we need to prove one more
theorem.

Theorem 2. If one varies the parameters of a monotonic binary CNN in a way that all the o�-centre
feedback elements remain non-negative, and the local pattern stability does not change, except possibly for
the unreachable local patterns, then the functionality of the network remains unchanged.

Remark. Unreachable local patterns are those that, even if they are stable, do not attract any of the initial
local patterns. Their stability is therefore of no practical importance.

Proof. Consider �rst all the locally unstable cells at time t0 = 0. By Corollary 1 they will all sooner or later
enter their lower saturation regions and stay there forever, even though the parameter values are changed.
During the time of their transition they can cause certain other neighbouring cells to become locally unstable,
and these cells will also start descending towards Sl, possibly leading to instability of some further cells.
To prove that this evolution always ends in the same global stable equilibrium let us assume that an

arbitrary cell, say cell Cij, fails to change its operation from Su to Sl because of the alternation of network
parameters. This means that at least one of the cell’s neighbours has also failed to do so, because if it had
not, then Cij could not have stayed in Su unless we have created a new stable local pattern. But then also
for this second cell, for the same reason, there must exist another cell which has also failed to leave Su.

†At time t = 0 all the derivatives ẏij = 0 (cf. De�nitions 1 and 2)
‡ Notation −1+ stands for a value in�nitesimally more than −1
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Because the size of the network is �nite, applying this reasoning recursively, we must come to a cell which
should have left Su at time t0 but failed to do so, which again contradicts our initial assumption that no new
stable local pattern was created.
In a similar way we can prove that no cell can fail to stay in Su provided that no new unstable local

pattern was created.

4. LOCAL RULES AND CNN DESIGN

We are now able to develop a formal design strategy based on the so-called local rules. Theorem 2 allows
us to eliminate analogue dynamics and, provided the stability of reachable local patterns is preserved, the
following discrete time evolution of a cell leads to the same CNN functionality as equation (6):

yij(t + 1) = sgn((A0;0 − 1)yij(t) + gij(t)) = �(Wij(t)) (8)

Now the output of the cell Cij is only the function of the local pattern in the previous time step, and the only
constraint imposed on �(·) is that yij(t + 1)6yij(t) for every reachable local pattern.
In order to design a particular application one only needs to de�ne a function �(·) as a set of local rules,

i.e. for each of the reachable local patterns one must decide upon the value of yij in the next time step.
When once �(·) has been set up the next step is to determine the stability of the local patterns, and the

following are the local rules translated into stability conditions:

1. If �(Wij(t)) = yij(t), then Wij(t) should be a stable local pattern.
2. If �(Wij(t))¡yij(t), then Wij(t) should be an unstable local pattern.

Having established the stability of local patterns we set up the set of linear inequalities for stable patterns

Wij ∈ Ps; yij((U∗a)Wij + Kij)¿ 1 (9)

and for unstable patterns

Wij ∈ Pu ; yij((U∗a)Wij + Kij)¡ 1 (10)

Inequalities (9) and (10) are derived from (7), and can be solved using one of the methods in References 14
or 6.
It should be noted that if one wants the network obtained by the above procedure operate properly, then it

is important that appropriate boundary conditions are introduced in the form of dummy border cells. These are
usually set to the background colour of the processed image. It can be shown that such boundary conditions
often inate the area bounded by inequalities (9) and (10), and can therefore increase the robustness of the
network. This is due to the fact that zero boundary conditions—which are tantamount to absence of border
cells—often impose some additional stability conditions (9) and (10).

5. SOME EXAMPLES

5.1. Logical or

As the �rst example we show how a multiple input logical or can be designed using the proposed method.
The rules that cell Cij must obey are very simple:

1. If a cell is white, then, if all its neighbours are also white, it must stay white, otherwise it should become
black.

2. If a cell is black, then it should remain black.

From these two rules it is obvious that the network behaviour will be monotonic, and that, in order that the
network will work properly, all the boundary cells must be �xed to the value −1.
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A CNN de�ned by the following template could perform the task:

A =



0 A 0
A A0;0 A
0 A 0


 ; I: (11)

From the above two rules and template (11) we arrive to the following stable and unstable local pattern sets:

Ps = {(−1;−1;−1;−1;−1)T; (x; x; 1; x; x)T} (12)

Pu = {−1; 1}5 \Ps (13)

where the symbol x stands for a don’t-care value, i.e. either 1 or -1. The middle element in a pattern vector
corresponds to the cell Cij.
From the stability of the local patterns (12) and (13), and from inequalities (9) and (10), we obtain the

following design constraints:

−(−A0;0 − 4A+ I)¿ 1 (14)

A0;0 − 4A+ I ¿ 1 (15)

−(−A0;0 − 2A+ I)¡ 1 (16)

Note that constraints derived from most local patterns are surplus and have been therefore omitted. Using the
method in Reference 6, while limiting absolute values of all the parameters to 10, the solution is A0;0 = 4,
A = 2:5, and I = 10.

5.2. Hole-Filler

Next we try to design a hole-�lling CNN, which can be de�ned by a template in the form

A =



0 A 0
A A0;0 A
0 A 0


 ; B (17)

The picture to be processed is fed to the input while the initial state values are set to 1.
The rules that cell Cij must follow are:

1. If uij = 1 then the cell must stay black forever.
2. If uij = −1 then the cell stays black only if all the four of its neighbours also stay black. Otherwise it
should switch to white.

We must construct stable and unstable local pattern sets for each of the two possible input values uij
separately. For uij = 1 we infer from the �rst rule that the stable pattern set is

Ps = {(x; x; 1; x; x)T} (18)

Because all the cells are initially black all the other local patterns are clearly unreachable and we do not care
about their stability.
From the second rule we have that for uij = −1,

Ps = {(1; 1; 1; 1; 1)T; (x; x;−1; x; x)T} \ {(1; 1;−1; 1; 1)T} (19)

Pu = {(x; x; 1; x; x)T} \ {(1; 1; 1; 1; 1)T} (20)

In this case the pattern (1; 1;−1; 1; 1)T is unreachable.

? 1998 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl., 26, 365–373 (1998)



A DESIGN METHOD FOR BINARY CELLULAR NEURAL NETWORKS 371

Figure 1. Non-linear feedforward template elements of hole-detecting CNN

From (18) we get a design constraint

A0;0 − 4A+ B¿1 (21)

while (19) and (20) yield

A0;0 + 4A− B ¿ 1 (22)

A0;0 + 2A− B ¡ 1 (23)

from which we get a solution A0;0 = 4, A = 2·5, and B = 10.

5.3. Hole-detecting CNN

A step in recognizing certain objects is to detect and count the number of holes they contain. One way
of detecting holes is �rst to �ll and then extract them by means of logical operation between original image
and the one with �lled holes. In this section we show that it is possible to design a CNN that performs a
hole-detecting operation in a single transient.
Again, all the initial states are set to 1, and cell Cij of a hole-detecting CNN must obey the following

rules:

1. If uij = 1 then the cell must change to white.
2. If uij = −1 then the cell changes to white if and only if the number of black outputs of the neighbouring
cells, ykl, plus the number of black inputs to the neighbouring cells, ukl, is smaller than four.

It is evident that in order to ful�ll the second rule we have to introduce some o�-centre feedforward
elements, so that the template for this kind of task will have the following form:

A =



0 A 0
A A0;0 A
0 A 0


 ; B =



0 B̂ 0
B̂ B̂0;0 B̂
0 B̂ 0


 (24)

where the feedforward template elements B̂0;0 and B̂ are non-linear, and are shown in Figure 1.
The purpose of the o�-centre elements B̂ is to compensate for negative outputs ykl = −1 at the locations

where ukl = 1. Therefore, they should be zero for ukl = −1 and positive for ukl = 1. The element B̂0;0 must
be non-linear, or the design constraints for this problem cannot be satis�ed (cf. (27) and (36)).
From rule 1 we have the local pattern sets

Pu = {(x; x; 1; x; x)T} (25)

Ps = {(x; x;−1; x; x)T} (26)

from which we obtain

A0;0 + 4A+ B+ + 4B¡1 (27)

? 1998 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl., 26, 365–373 (1998)



372 I. FAJFAR ET AL.

In order to satisfy rule 2 we would have to construct a local pattern sets for every possible number of
ukl = 1 which is a little bit impractical, so we try to set up appropriate inequalities directly. First, let us
consider a case where no neighbouring ukl = 1. In that case a black cell is locally stable i� all the four of
the neighbouring cells are black

A0;0 + 4A+ B−¿1 (28)

and unstable otherwise:

A0;0 + 2A+ B−¡1 (29)

Again we have one unreachable pattern (1; 1;−1; 1; 1)T, while the other cases with Cij white should be locally
stable but the stability condition is already satis�ed by (29).
In the same way we get the inequalities for the case where exactly one of the neighbours has black input,

ukl = 1. Now all the black cells with three or more black neighbours should be locally stable, and other black
cells locally unstable:

A0;0 + 2A+ B− + B ¿ 1 (30)

A0;0 + B− + B ¡ 1 (31)

And, equivalently, for the last three cases we have

A0;0 + B− + 2B ¿ 1 (32)

A0;0 − 2A+ B− + 2B ¡ 1 (33)

A0;0 − 2A+ B− + 3B ¿ 1 (34)

A0;0 − 4A+ B− + 3B ¡ 1 (35)

A0;0 − 4A+ B− + 4B ¿ 1 (36)

A solution to (27)–(36) is A0;0 = 1·1; A = 0·7; B = 1·5; B− = −2·5, and B+ = −10.

6. CONCLUSIONS

Although the design method proposed in the paper is limited to a class of monotonic binary CNNs, we believe
that it is an important contribution to the pool of existing CNN design and learning algorithms. Binary CNNs
constitute a signi�cant part of many analogic CNN algorithms, and all the so far reported binary CNNs
except for a connected component detector, whose dynamics has been studied extensively in Reference 15,
are monotonic.
We have shown that for this class of CNNs the stability of reachable local patterns is a su�cient condition

for functionality of the network. That reduces a problem of designing such networks to a simple �xed point
design, which consists of merely �nding necessary local stability conditions for a problem in hand, and then
solving a resulting set of linear inequalities. This is signi�cant simpli�cation over the method in Reference 8,
the only other known analytical design method for CNNs, and it makes the method well suited for automated
design. Apart from that, our method is also directly applicable to discrete-time CNNs.
Another advantage of the results reported in the paper is the simple condition summarized in Theorem 1,

which tells us in which case CNN dynamics will be monotonic. Experiments indicate that incorporating some
simple non-linear elements in such networks can speed up the overall CNN transient up to two orders of
magnitude,16 which is mainly due to the increased propagation speed obtained by those non-linearities.
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