
Elektrotehniški vestnik 65(5): 267-271, 1998
Electrotechnical Review, Ljubljana, Slovenija

SPICE for Windows 95/98/NT

Janez Puhan, Tadej Tuma, Iztok Fajfar
Univerza v Ljubljani, Fakulteta za elektrotehniko,
Tržaška cesta 25, 1000 Ljubljana, Slovenija
E-pošta: janez.puhan@fe.uni-lj.si

Abstract. The analogue circuit simulator SPICE was originally developed at the University of
California at Berkeley. It was has been constantly upgraded and maintained at Berkeley from 1972 to
1992, when the last official release 3f4 was published. The UNIX based source code is still available
as freeware at ftp://ic.berkeley.edu/pub/Spice3/. Although the research at Berkeley has stopped, many
commercial companies continue to use the Berkeley code as the core of their SPICE compilations
with no or little modification. Since we have good experience with the original SPICE 3f4 code on
UNIX machines, we decided to modify the code in order to run it on the PC running Windows
operating system. In this paper, we present a fully functional compilation of SPICE 3f4 for Windows
95/98/NT. Our compilation offers a native SPICE environment with an interactive interpreter known
from UNIX operating systems. In the paper, a PC version is introduced through two simulation cases.
All simulation files as well as the simulator itself may be downloaded from
http://fides.fe.uni-lj.si/spice.

Key words: SPICE, CAD, Nutmeg, analog circuit analysis

SPICE za Windows 95/98/NT

Povzetek. Program SPICE je namenjen analizi
analognih vezij. Razvit je bil na Kalifornijski univerzi
Berkeley v letih od 1972 do 1992, ko je bila objavljena
zadnja uradna različica 3f4, razvoj programa pa
ustavljen. Originalna izvorna koda pisana v UNIX
okolju je javna last in je še vedno na voljo na naslovu
ftp://ic.berkeley.edu/pub/Spice3/. Berkeleyevo izvorno
kodo brez ali z le manjšimi spremembami uporabljajo v
svojih izdelkih mnogi komercialni ponudniki SPICE-a.
Po dobrih izkušnjah z izvorno kodo v UNIX okolju smo
se odločili, da jo prilagodimo za tek na osebnih
računalnikih z Windows operacijskimi sistemi. V članku
predstavljamo SPICE 3f4 za Windows 95/98/NT v
popolni obliki. Naša različica ponuja prvotno SPICE
okolje z interaktivnim interpreterskim jezikom, ki ga
poznamo z UNIX operacijskih sistemov. Nova različica
je v članku predstavljena z dvema primeroma. Vse
datoteke, kot tudi program, je možno dobiti na naslovu
http://fides.fe.uni-lj.si/spice/.

Ključne besede: SPICE, CAD, Nutmeg, analiza
analognih vezij

Received 8 October 1998
Accepted 23 October 1998

1 Introduction
SPICE (Simulation Program with Integrated Circuit
Emphasis) is the most commonly used analogue circuit
simulator today. Through years it has become a
nonofficial industrial standard for computer aided design
of electronic circuits. SPICE is a general-purpose
analogue simulator. It contains models for most circuit
elements and can handle large non-linear circuits. The
simulator can perform several different types of circuit
analyses. The most important are the DC analysis, AC
small-signal analysis and transient analysis, which is
numerically the most complex analysis in SPICE.
The simulator was developed at the University of
California, Berkeley, and was first released in 1972.
Many scientists at Berkeley and other institutions have
contributed to the development and improvement in
subsequent versions of SPICE. The next major release of
SPICE, called SPICE2, was published in 1975 [1]. The
core of the program has remained intact, even after many
improvements and additions. The last major release,
SPICE3 [2], came in 1985 with a conversion of the source
code from FORTRAN to the C programming language.
The source code of Berkeley’s SPICE is public domain.
In the last officially published version 3f4, the program is
divided into two parts: the simulator and the front-end.
The front-end includes an interactive interpreter
programming language, which allows interactive SPICE
sessions. It acts as a simple pre- and post-processor. The

source code can be compiled on different hardware
platforms with different operating systems. To a limited
extent it can also be compiled on a IBM compatible
personal computer with a MS-DOS operating system.
Many companies like Intusoft (http://ww.intusoft.com)
have compiled SPICE and integrated it as an analogue
circuit analyser into many different development
environments including programs for design of printed
circuit boards, digital circuit simulation, filter design
tools, mixed mode simulators etc. Their efforts are mainly
focused into building user-friendly graphical pre- and
post-processors and building libraries of models. These
commercial SPICE compilations are usually very
expensive, although their numerical performance is rarely
superior to the original Berkeley public domain. For these
reasons we decided to compile Berkeley’s latest SPICE
version for PCs running Windows 95/98/NT and, of
course, make it public domain.

2 Compiling SPICE for MS-DOS
and Windows

Our starting point was the Berkeley’s SPICE 3f4 code
from http://www.cad.eecs.berkeley.edu/Software/software
.html. It can be directly compiled for the MS-DOS
operating system on IBM compatible personal computers
with a slightly out-of-date Microsoft C compiler version
5.1. The compilation produces the following executables:
• bspice a batch mode simulator (the simulator

part of SPICE)
• cspice a SPICE2 like interface for small runs
• nutmeg a standalone data analysis program (the

front-end part of the SPICE without the help
command and any graphical interface)

• help a standalone help browser (the help
command of the front-end part)

• proc2mod converts process characterisation files to
BSIM1 MOS model definitions

• sconvert converts between ascii and binary
SPICE data files

• multidec a utility for decomposing coupled lossy
transmission lines into equivalent uncoupled

lines
All these executables are only a small part of the entire
integrated simulator environment and therefore not so
useful for serious work. There isn’t even a graphical
postprocessor. Hence our motivation to compile the main
executable spice3 under Windows. It allows interactive
SPICE sessions, programming capabilities, and graphical
data presentation. All attempts to compile spice3 with the
Microsoft C 5.1 compiler failed because of memory
problems. So we tried with the latest Microsoft Visual
C++ 6.0 compiler. After solving some incompatibility
problems we managed to compile and run spice3 in an
MS-DOS window under Windows 95/98/NT with two
serious drawbacks:
1. As we changed the compiler as well as the operating

system, all graphical routines are incompatible. So
we lost all graphical support. Spice3 was running
without its plot and iplot [3] commands.

2. The resulting code was extremely unstable. It was not
convenient for longer interactive SPICE sessions

because of numerous memory leaks of the original
code. They were usually fatal and caused the program
to crash. The problem turned out to be sloppy
programming all over the nutmeg portion of the code.
There are also many attempts of dereferencing NULL
pointers. The Windows operating system is very
strict about this while UNIX proves to be quite
tolerant towards dereferencing uninitialized pointers.

We overcame the first problem by rewriting all graphical
functions using Windows graphical libraries. The original
syntax of the plot and iplot commands was of cause
completely preserved, enabling any script compatibility
with earlier SPICE 3f4 source files. The second problem
took many months of painful searching for needles in the
haystack, but finally we were able to produce quite a
stable PC version of SPICE 3f4.

3 An advanced simulation case
Let us consider the audio power amplifier in Figure 1.
The relatively strong negative feedback of the resistors R3
and R4 is defining a constant gain of approximately 100.
At the same time the negative feedback is causing a linear
response and is also keeping the output impedance low. In
our case, we will analyse the output impedance in detail.
The two complementary power transistors Q7 and Q8 are
taking care of the positive and negative output current
respectively, which is drawn by the amplifier’s load
resistor R13. The process of one transistor passing the
load control to the other is always a source of non-linear
behaviour, which is usually reduced by some voltage
difference between the two base terminals of the
complementary transistors. In our case, transistor Q4 in
conjunction with the resistors R9 and R10 is smoothening
the crossover. In addition to this mechanism, the negative
feedback is also compensating for this disturbance.
Therefore it should be possible to show that the negative
feedback impact on the output resistance is reduced at
very low output voltages, since this is the area where the
feedback must compensate for the crossover in the bias.

v(1)
input 1

+
v1
0V

r1
47k

+

voffset

v(2)

2

c1
.22uF

r2
24k

q1
bc556
q2
bc556

18

3
4

v(4)

r3
470

5

c2
33uF

r5
1.5k

6

15

r6
100

7

c3
1nF

r4 47k

8

q4
bc546

c4
47pF

9

r9
2.2k

11

r10
1.5k

10

q3
bd139

12

r8
4.7k

c5
47uF

16

r7 470

r11
100

q5
bd139

r12
100

q6
bd140

13 q7
mj2955

14 q8
mj2955

d1
mr811

d2
mr811

r13 4
+

voutput ac

17

+
v2
25V

+

v3
-25V

v(9)
output

Figure 1: An audio power amplifier

Let us first check the situation at the base terminals of the
two Darlington transistors. We will run a dc analysis
sweeping the input offset voltage source from –200mV to
200mV, while observing the voltage at the base nodes 8,
11, and the common emitter node 9. After having loaded
the circuit description file poweramp.cir it takes only two
additional commands to obtain a plot window with
appropriate results (Figure 2).

Figure 2: The crossover compensation

As can be clearly seen from the markers in Figure 2, we
have a considerable step in both base voltages, which is
caused by the negative feedback in order to produce a
linear output voltage (the curve in the middle). Let us now
look at the effect of the crossover on the output
impedance, which can be determined as the quotient
between the small signal response of the output voltage
v(9) versus the output current i(voutput) over a certain
frequency range. The circuit bias point is, of course, a
very important parameter in the ac analysis. We will run
five ac analyses at offset voltages from 0mV to 40mV by
simply typing the following commands shown in Figure
3.

Figure 3: The output impedance at different biases

The resulting curves yield a typical ac response of the
output impedance. The flat sections clearly identify the
amplifiers active frequency range, where the negative
feedback is reducing the output impedance. Also, the

effect of the offset voltage in the crossover range is
apparent. Let us investigate this effect further by running
a multiple ac analysis in order to plot the output
impedance versus the offset voltage at the central
frequency of 1KHz. Although we could continue our
dialog from Figure 3, these analyses seem to be too
complex to type interactively, therefore we decided to
write a simple script file containing the appropriate
commands in a while loop. The script might look like the
one depicted in Figure 4.

Figure 4: The output impedance vs. the input offset

The plot command after the while loop summons the
simulation data and displays the graphical results shown
in Figure 5.

Figure 5: The output impedance vs. the input offset

As expected, we can see a dramatic increase in the output
impedance during the crossover. This is a very interesting
analysis, but of no particular practical value since the
effect is limited to a range of output voltages from 0 to
50mV. For audio purposes this range is certainly
neglectable. The example nevertheless shows how easy
and fast even very complex analyses can be done using
the original Berkeley compilation of SPICE 3f4 on a
Windows95 platform. In our next example we will show
that it is even possible to do optimisation loops directly
within the nutmeg user interface.

4 An optimisation example
We are looking for values of the two resistors R1 and R2
in a simple amplifier in Figure 6. We want maximal
linearity at an amplification factor of at least 20000V/A.

q1
2n3510

3

r1 = ?

1

v(3)
output

+++
vcc
12V

+
2

r2 = ?

i1
100 A+ µ_

Figure 6: A simple transistor amplifier

First we have to define some explicit as well as one
implicit constraint. The explicit constraints are obvious
since we know that the resistor values can’t possibly lie
outside the intervals:

5 501k kΩ Ω≤ ≤R (1)
20 2002k kΩ Ω≤ ≤R

Since we intend to analyse the circuit in the dc domain,
we define the amplification as the ratio of the extreme
points of the response to the excitation. This is our
implicit constraint:

V/A20000
2

)()(

max

max3max3 ≥−−=
I

IvIvA (2)

The most important part of any optimisation is certainly
the cost function. In our case we want the cost function to
reflect the circuit linearity, defined as a normalised square
area between the real and ideal response:

∫

∫

−

−

−−

=
max

max

max

max

1
2

1

1
2

3131

21

)(

)))0()(((

),(I

I

I

I

diAi

divivAi
RRE (3)

The cost function must be a positive scalar and will be
minimised during the optimisation procedure. The ideal
value is zero, in which case the amplifier dc response is
linear.
The implementation of the implicit constrain and the cost
function into the nutmeg source code is fairly simple:
**** The analysis
alias analysis dc i1 -100uA 100uA 10uA
**** The cost function definition
alias cost let temporary = (3 *
mean((((v(3)[20] -
 + v(3)[0]) / (2*100uA)) * sweep - v(3) +
v(3)[10])^2))
 + / (((v(3)[20] - v(3)[0]) / (2 *
100uA))^2 *
 + (100uA)^2)
**** The implicit constrain definition
alias gain let a = (v(3)[20] - v(3)[0]) /
(2 * 100uA)

As for the optimisation algorithm, we decided to use a
well known constrained simplex optimisation method
introduced in 1965 by M. J. Box [4]. It is robust and
simple. Since the implementation of the optimisation
algorithm takes over 160 nutmeg programming lines, we
will not discuss it any further at this point. The entire

simulation file simplex.cir can be downloaded from
http://fides.fe.uni-lj.si/spice.
The execution of our optimisation loop takes 104
iterations and stops at the implicit constrain with a cost
function value of 0.0009, gain value of 20000.05V/A and
resistor values of R1 = 25965Ω and R2 = 33816Ω
respectively. The optimisation takes about 17 seconds on
a PENTIUM 133MHz personal computer running
Windows NT.

5 Conclusions
We presented a fully functional compilation of Berkeley’s
latest SPICE 3f4 for the Windows platforms. Our
compilation is free of charge and can be downloaded from
http://fides.fe.uni-lj.si/spice. The code is strictly Berkeley
compatible, thus directly running any circuit and library
file from Berkeley. Also, any original documentation
applies to our compilation.
Since we used the Microsoft’s visual C compiler version
6.0, the resulting executable is relatively fast and will be
easy to upgrade to new Windows releases in future.
Although the graphical interface was completely rewritten
in order to comply with the current Windows standards,
its input syntax was not changed.
In this paper, we demonstrated that the front-end part of
SPICE 3F4 (nutmeg) is very convenient both for
interactive user sessions as well as for script file
processing. The first simulation case shows the
possibilities of a mixed interactive and script approach,
combining the results of several different analyses into
complex plots. In the second example, we pushed the
script processing capabilities to the extreme by running a
complete two-dimensional optimisation loop on a simple
circuit.
The optimisation possibilities are actually our next goal.
We intend to add an optimisation command to the
NUTMEG interpreter, executing different constrained
optimisation algorithms directly in the machine code. This
should enable a relatively fast optimisation of large
circuits [5].

6 References
[1] Laurence W. Nagel, "SPICE2: A Computer

Program to Simulate Semiconductor Circuits",
Memorandum No. ERL-M520, University of
California, Berkeley, 1975

[2] Thomas L. Quarles, "Analysis of Performance
and Convergence Issues for Circuit Simulation",
Memorandum No. ERL M89/42, University of
California, Berkeley, 1989

[3] T. Quarles, A. R: Newton, D. O. Pederson, A.
Sangiovanni - Vincentelli, "SPICE3 Version 3f3
User’s Manual", Department of Electrical
Engineering and Computer Sciences, University
of California, Berkeley, 1993

[4] M. J. Box, "A new method of constrained
optimization and comparison with other
methods", Computer Journal, volume 7, pages
42 - 52, 1965

[5] J. Puhan, T. Tuma, "Optimization of analog
circuits with SPICE 3f4", Proceedings of the
ECCTD’97, Volume 1, pages 177 - 180, 1997

Janez Puhan graduated from the Faculty of Electrical
Engineering, University of Ljubljana, Slovenia in 1993,
where he also obtained his M.Sc. degree in 1998. His
current research interests are in cumputer aided design of
analog circuits, optimisation methods and computer
circuit analysis.

Tadej Tuma received his diploma degree at the Faculty
of Electrical Engineering in Ljubljana in 1988. Soon
thereafter he joined the Faculty as a teaching assistant. At
the same time he began his postgraduate studies, which
were completed by his M.Sc. thesis in 1991 and his Ph.D.
dissertation in 1995. His research interest is mainly in the
field of computer aided circuit design, especially in
analog circuit optimization methods.

Iztok Fajfar received the Dipl. Ing., M.Sc. and Ph.D.
degrees in electrical engineering from the University of
Ljubljana in 1991, 1994 and 1997, respectively. Since
1992 he has been with the Faculty of Electrical
Engineering of the University of Ljubljana where he is
currently an assistant professor. His research interests
include design and optimisation of electronic circuits with
focus on cellular neural networks.

