SIMULATED ANNEALING FOR SIZING OF
INTEGRATED CIRCUITS IN SPICE

Jernej Olensek!, Arpad Biirmen', Janez Puhan', Tadej Tuma'

'University of Ljubljana, Faculty of Electrical Engineering
1000 Ljubljana, TrzaSka 25, Slovenia

jernej.olensek @fe.uni-lj.si(Jernej Olensek)

Abstract

This paper presents a new optimization algorithm for automatic sizing of integrated circuits
(IC) in SPICE. We refer to the new method as DESA. It is a hybrid between two very popular
oprimization methods. The first one is differential evolution (DE) which is a robust population
based optimization method and has received a lot of attention in the recent years. It was also
sucessfully applied to many practical applications. The second method is the simulated anneal-
ing algorithm (SA) which is a fairly simple but very powerfull stochastic global optimization
method. Combination of DE and SA (DESA) is expected to exploit good global search capabil-
ities of SA and efficient search mechanism and fast convergence of DE. DESA is fairly simple
to implement and has only a few parameters. In order to verify its performance in IC design
it was implemented in SPICE OPUS simulation and optimization tool. It was compared with
the multistart version of the constrained simplex method (multistart COMPLEX), which was
already part of SPICE OPUS and produced good results in IC optimization. The performance
of DESA and the multistart COMPLEX method was verified on seven real-world cases of 1C
design. The comparison in terms of the final solution quality and the number of required cost
function evaluations showed that DESA outperformed the multistart COMPLEX method on all
considered test cases.

Keywords: global optimization, simulated annealing, differential evolution, IC design

Presenting Author’s Biography

Arpéd Bilrmen was born in Murska Sobota, Slovenia in 1976. He re-
ceived his Uni.Dipl.-Ing. degree and his Ph.D. degree from the Faculty
of Electrical Engineering, University of Ljubljana, Slovenia in 1999 and
2003, respectively. Since 2002 he has been a teaching assistant at the Fac-
ulty of Electrical Engineering. His research interests include continuous
and event driven simulation of circuits and systems, optimization methods,
their convergence theory and applications, and algorithms for parallel and
distributed computation.

1 Introduction

Design of integrated circuits (IC) is a very challenging
and extremely time consuming task. The whole process
can be roughly divided in three major steps. First the
desired circuit performance has to be specified (design
goals). According to these specifications an appropriate
circuit topology must be selected. Finally the device
parameters need to be determined (device sizing) so that
the circuit meets the design specifications.

In the past the last two steps were completely depen-
dent on designer’s knowledge and experience. They
also required an enormous amount of time since ev-
ery circuit had to be tested manually. With fast de-
velopment of computer technology the automation of
the design process became a very attractive aspect and
many computer-aided design (CAD) tools have been
developed. Although the circuit topology selection still
depends greatly on the experience of the designer, the
amount of time and human effort needed to determine
the appropriate device parameters can be greatly re-
duced with the use of modern CAD tools.

Once the topology has been selected, the quality mea-
sure of the circuit with the given device parameters
must be defined. In the past the quality of the circuit
was determined through measurements of a real cir-
cuit, which was extremely expensive and time consum-
ing. Today it is obtained through numerical simulations
of a circuit with the help of circuit simulators such as
SPICE. The quality of the circuit is expressed as a real-
valued function, referred to as the cost function (CF).
It is a function of device parameters and includes all
considered design goals (gain, bandwidth, noise, offset,
delay,...). Large CF values indicate low quality circuits,
while the values less than or equal to zero indicate that
all design goals are satisfied or even surpassed. The
problem of finding the optimal circuit can then trans-
lated into a global optimization problem (GOP) as de-
scribed by Eq. (1)

2" = arg min f(z))
f:S—=R

S ={z,2 e RN,i(i) < 2(i) <u(i),i=1,..N}

where f(z) is the cost function, x is a N-dimensional
vector of optimization variables (parameters), and ()
and (%) are the lower and the upper bound for the i-th
variable, respectively. The optimization parameters in
IC design are usually MOS transistor channel lengths
and widths and their multiplier factors. Often resis-
tances and capacitances, and sometimes bias currents
or voltages are also included as optimization variables.

In practice GOP described by Eq. (1) often can not
be solved analytically. When the CF value is obtained
through numerical simulations or measurements no an-
alytical expression for the CF is available. Since such
optimization problems arise in virtually every field of
research, industry, and economy, a very large number of

different optimization methods was developed to solve
the problem numerically. They are often designed to
solve a very specific class of optimization problems,
therefore the selection of the appropriate method for a
specific problem is very important.

The optimization methods can be classified by three
major criteria. According to gradient information we
can classify the methods as gradient methods, which
require derivatives of the CF, and direct search meth-
ods that rely only on the CF values at different points in
the search space. The next criteria is the search mecha-
nism. Deterministic methods use a systematic approach
to search through the parameter space. The alternative
are stochastic methods that rely on some kind of a ran-
dom search process. The final criterion is the nature of
the final solution. Local optimization methods are de-
signed to find the nearest minimum as quickly as pos-
sible even if it is not the best minimum in the search
space. Global methods on the other hand perform a
thorough search and can find the true global minimum
with high probability.

Not all classes of optimization methods are appropri-
ate for IC optimization. In IC design the CF is obtained
through numerical simulations, which always introduce
numerical noise in the CF. The device characteristics
are nonlinear therefore the CF itself is also expected to
be highly nonlinear. Due to nonlinearity we can expect
several local optimal solutions in the given parameter
space S. Another problem is the size of S (the dimen-
sionality of the problem). The complexity of modern
circuits is increasing rapidly resulting in a large num-
ber of optimization parameters. The circuit is expected
to be robust. It must meet design specifications under
different environmental conditions and manufacturing
process variations. All these facts make the optimiza-
tion of ICs extremely difficult and time consuming, and
many optimization methods inefficient and unreliable.
The fastest gradient methods require derivatives of the
CF, which are usually not available in IC design. Noise
also reduces their usability. Large parameter space re-
quires a stochastic search mechanism and a large num-
ber of local minima implies that fast local methods are
not the best choice. A direct stochastic global opti-
mization method is needed to successfully solve IC op-
timization problems.

In this paper we present a new global optimization
method (DESA) and apply it to IC design problems. It
is a hybrid between differential evolution (DE) and sim-
ulated annealing (SA) algorithm. Both of these meth-
ods have received a lot of attention in the recent years
and were successfully applied to many practical prob-
lems. SA and DE also have their drawbacks. A com-
bination of both methods is expected to maintain the
good features of the original methods while avoiding
their weaknesses.

This paper is organized as follows. In sections 2 and 3
the basic SA and DE algorithms are briefly described.
Section 4 gives a detailed description of the DESA al-
gorithm. Section 5 contains the experimental setup and
the optimization results for several real-world IC design

problems. Section 6 contains the concluding remarks.

2 Simulated annealing (SA)

Simulated annealing (SA) is a stochastic global opti-
mization algorithm that performs random sampling of
the search space [1]. Its main feature is the mechanism
controlling the transition from the current point (z) to
a new point (z"), generated by a random perturbation
(dx) of point z. The transition mechanism is known as
the Metropolis criterion and is defined as

_fE"M) (=)
T

) 2

P =min(1,e

where f(z™) and f(x) are the CF values at the trial and
the current point, respectively. 7" is the current value of
the temperature parameter, which controls the probabil-
ity of accepting the transition from the = to ™. Down-
hill transitions are always accepted, while uphill transi-
tions depend on the value of T. At the beginning of the
search 7' is set to a large value and uphill transitions are
accepted with high probability. During the optimization
T is reduced according to the specified cooling sched-
ule which reduces the probability of accepting uphill
transitions. When 7" has a very low value most uphill
transitions are rejected and SA runs almost as a descent
method.

One of the attractive features of SA is the fact that its
convergence to the global minimum can be proved un-
der certain assumptions. In [2] for example there are
several convergence results for various SA algorithms.
However such algorithms require an appropriate mech-
anism for generating the random step dx and a very
slow cooling schedule, which often makes them too
slow for practical purposes. Modified versions are of-
ten used to speed up the convergence. The convergence
results no longer apply to modified versions but the al-
gorithms still exhibit good performance.

3 Differential evolution (DE)

Differential evolution (DE) is a parallel direct search
method that uses a population of M points to search
for a global minimum of a function over a continuous
search space [3]. For every point (target point z'*) in
the current population a so called mutated point (™) is
generated by adding a weighted difference of two ran-
domly selected points (z°“! and 2“2 from the current
population to the third point (2°“3). The weight factor w
is given by the user and usually belongs to the (0,1] in-
terval. Then crossover between the current target point
and the mutated point is applied to generate a trial point
(x9). Several crossover schemes have been reported in
the literature. Binomial crossover where the crossover
is applied independently to every variable with proba-
bility P, is often used. If the CF value at 29 is lower
than at 2%, 29 will replace x*' in the next generation.
The process is repeated until the maximal number of
generations is reached. Eq. (3) describes the basic trial
point generation mechanism

For every it =1,2,...M 3)
Select randomly icl,ic2,ic3 € {1,2,...M}

icl #ic2 # ic3 # it

™ = xicS + (.’Eid _ $i02) Sw

Select randomly I, € {1,2,...N}
Forevery:=1,2,...N

9(i) = { x™(@) i U[0,1] < P.ori=1I

2 (7) otherwise
where UJ0, 1] denotes a uniformly distributed random
variable from [0,1] interval. Ij ensures that the gener-
ated trial point is not identical to some member of the
current population.

4 DESA algorithm

SA and DE have their strengths but also drawbacks. SA
is known to have good global search capabilities but its
convergence is very slow due to inefficient random sam-
pling of the search space. The selection of the appro-
priate sampling mechanism and more importantly the
cooling schedule is also very difficult. DE on the other
hand has a robust and efficient search mechanism but
only solutions with lower CF value are accepted into the
next generation. It can get trapped in a local minimum
without any chances of escaping. DE also requires a
large population to maintain the diversity of the gener-
ated trial points.

With DESA we hope to combine good global search ca-
pabilities of SA and efficient search mechanism of DE.
The method uses a population of M samplers, and a
combination of random sampling and the original DE
operator. The method also uses the original Metropolis
criterion to allow uphill transitions. Since the annealing
schedule is one of the most problematic aspects of SA,
we use a different approach. Instead of having a sin-
gle sampler and decreasing the temperature with time
we have multiple samplers operating at different con-
stant temperatures. Temperature changes are achieved
by exchanging the points between different samplers.
There have already been several attempts to use such
an approach to avoid the difficulties of selecting the
appropriate cooling schedule [4, 5]. We also include
a random sampling mechanism to maintain population
diversity. For this purpose every sampler has a fixed
parameter called the range which is used in the genera-
tion of random moves. Now the i-th sampler g* (where
1 = 1,2,...M) can be fully defined by the following
features:

1. temperature T, which is used in the Metropolis
criterion

2. range R’, which is used for random step genera-
tion

3. crossover probability P¢, which is used in DE op-
erator

4. apoint 2* in the search space S

Since different optimization parameters in IC design
have values that can differ by several orders of mag-
nitude, we normalize all optimization variables to the
[0,1] interval. A detailed description of the DESA
method is given in the following subsections.

4.1 User defined input parameters

The method uses some parameters that must be set by
the user. They are the number of samplers M > 4
(population size), minimal temperature 7™ > 0 (tem-
perature for the last sampler), minimal range parame-
ter RM > 0 (range parameter for the last sampler),
crossover probabilities for the first and the last sampler
P, PM ¢ [0,1], and the stopping distance Dgzop >
0. Default values for these parameters are M = 20,
T™ =107%, RM =105, P! = 0.1, PM = 0.5 and
Dstop = 10_4.

4.2 Initialization of population

The initial population can be generated randomly but
in our method we use an approach that allows more
thorough exploration of the search space. Every opti-
mization variable interval is first divided into M equal
subintervals. Then M points are randomly generated so
that every subinterval for every optimization variable is
included in the initial population. This is very important
in algorithms that use crossover operators. The values
of parameters inside subintervals are chosen randomly.

4.3 Initialization of method parameters

At the beginning of the optimization run some addi-
tional method parameters must also be set. These pa-
rameters are the temperature, the range parameter and
the crossover probability for every sampler. All of them
are initialized in the same way. We use the values of
the parameters for the first and the last sampler and an
exponential function to calculate the values for the re-
maining samplers.

1 T
Ct = M—_1 IOg(W) “)

TH=T" e~ (=D i =12 .M

T is the maximum temperature and is set to the CF
difference between the worst and the best point in the
initial population. The same procedure is then repeated
for the range parameter R* with R = 1, and for the
crossover probabilities P.

4.4 Trial point generation mechanism

In every iteration a single point is selected for improve-
ment. We select the worst point in the current popu-
lation but any point that is not the best point can be
selected here. We denote the sampler that holds this
target point with the superscript it. A trial point is gen-
erated using a combination of an operator similar to the
original DE operator and a random move. First 29 is
generated according to Eq. (3). Then a random step r

is generated according to the Cauchy probability distri-
bution with the range parameter R**. A trial point x9 is
then updated with the random step r. The procedure is
given by Eq. (5).

r(i) = R" - tan(m - (U[0,1] — 0.5)) 5)

All variables 9 (i) that violate box constraints are set to
arandom value between %! (i) and the violated bound-
ary value.

4.5 Acceptance criterion

In this phase of the algorithm the generated trial point
29 is submitted to the Metropolis criterion (Eq. (2))
with temperature T%. If the Metropolis criterion is
satisfied, 9 replaces x'* in the next generation. Bet-
ter points are always accepted. If the trial point 29 is
worse than the current target point, the transition de-
pends on the sampler that holds the target point. If the
target point '’ is located at the sampler with a high
temperature (i.e. 7% is large), 29 will have a high prob-
ability of being accepted. If the target point is located
at a low temperature, this probability will be low. With
this mechanism the chances for the algorithm to escape
from a local minimum are increased.

4.6 Acceleration

The method can use many different mechanisms to
speed up the convergence. In our case we used a fairly
simple procedure. Every time a new best point is found,
we apply this mechanism. We construct a quadratic
model function based on three collinear points in the
search space. The first point is a randomly selected
point from the current population. Points with higher
CF values have higher probability of being selected.
The probability of selecting the point il is given by Eq.
(6).

M f@h)— @t ©
7j=1 f(mworst)ff(xbest)

P(il) =

x¢st and £°"$* denote the points from the current pop-
ulation with the lowest and highest CF values, respec-
tively.

The second point is the centroid of the population points
(c) and is calculated according to Eq. (7).

LM
c:M;m @)

These two points define a search direction d = ¢ — z*.

The third point p> is obtained by making a random
move from z? in the direction d. If the obtained

quadratic model function is not convex, the best of these
three points is returned. For the convex case the mini-
mum of the model function is returned. If the minimum
of the model function violates box constraints, it is first
contracted towards 2% until the violation is removed.
The returned point replaces %! if it has lower CF value.

4.7 Temperature transition

One of the main problems of the original SA algo-
rithm is the selection of the appropriate cooling sched-
ule. If the cooling is too fast the algorithm can get
trapped in a local minimum and if the cooling is too
slow the optimization takes too long to be of any use
for practical purposes. In DESA the cooling schedule
is not needed because temperature changes are achieved
by simply exchanging points between samplers which
operate at different but fixed temperatures. After ev-
ery trial point generation, replacement, and acceleration
phase we randomly select a sampler ¢g** from the popu-
lation. Then samplers g** and g*® exchange their points
in search space with probability given by Eq. (8).

P = min(1, e~ (G =70 (EI-1)) (g

This mechanism is quite different from the original idea
of SA. Here the idea is to always send better solutions
to samplers with higher T and R (i.e. if T% > T and
f(x*) > f(«)) but also allow the occasional tran-
sition of a better point to a sampler with lower T'. If
the point 2 is worse than z the situation is reversed.
The mechanism reduces the probability of the exchange
if the difference in the temperature values of the two
samplers is too large. Samplers with small values of
T work almost as a downhill method accepting mostly
points that reduce the CF value. Their value of R is
small so the random component in trial point genera-
tion is also small and the applied operator is very much
like the original DE operator. These samplers execute
an algorithm very similar to DE. When a good point is
found, the next point to be improved is likely to be at
samplers with higher 7" and R so the algorithm runs at
least for a while like a random search allowing longer
jumps through the search space and making uphill tran-
sitions with higher probability. If an acceptable solution
is not found the point eventually ends up at samplers
with small 7" and R and the whole process is repeated.
This scheme also performs a kind of reannealing and
further improves the chances of escaping from a local
minimum.

4.8 Stopping conditions

Several termination criteria can be used in our method.
In practice the time available for the optimization is al-
ways limited so the maximal number of function evalu-
ations is a logical choice for termination. The maximal
distance between points in the population and the cur-
rent best point is also used in the termination condition.
When this distance falls below a user-defined stopping
distance Dy, the algorithm is terminated. The third
termination criterion is the CF value difference between
the best and the worst point in the current population.

When this difference becomes smaller than the user-
defined minimal temperature (7"™) the algorithm is ter-
minated. In IC design all the design goals are satisfied
when the CF value reaches zero (see [6]). This can also
be used in the termination condition.

5 Optimization of integrated circuits

Many different circuit simulators exits and one of the
most popular is SPICE. The original SPICE is an open
source program and due to its huge success the core
can still be found in many modern CAD tools. SPICE
OPUS [7] is a version of the original SPICE but unlike
many other versions it is designed to allow automatic
circuit optimization. Several optimization methods are
already implemented in SPICE OPUS. The method that
produced good results in IC optimization is a version
of the simplex algorithm referred to as the constrained
simplex method (COMPLEX) [8]. The original COM-
PLEX method is a local procedure therefore a multistart
concept was implemented in SPICE OPUS to improve
the methods global search capabilities. Every time the
COMPLEX method reaches its termination conditions,
a new simplex is initialized in the unexplored parts of
the search space and the process is repeated until the
maximal number of CF evaluations is reached [9]. The
concept has proved to be fairly successful in IC design
but it is sometimes slow and unreliable. DESA method
is new and was implemented in C language as a part of
SPICE OPUS and is expected to achieve better perfor-
mance than the multistart COMPLEX method.

In IC optimization the definition of the CF must account
for all circuit properties for which the design goals are
set. Usually there are many conflicting design goals
(i.e. for gain, bandwidth, power consumption, etc.).
This makes the optimization very difficult. In addition,
the circuit is expected to satisfy the design goals under
different environmental conditions. In SPICE OPUS
This is achieved by simulating the circuit across several
corner points. Every combination of the environmental
parameters (such as the temperature, circuit load, power
supply voltage, model parameters, etc.) is represented
by a corner point. For every corner point simulations
are conducted resulting in real values that measure cir-
cuit properties in different corners. The worst values of
circuit properties are then used to construct the penalty
functions. The value of the CF is obtained as a weighted
sum of all penalty functions [6]. When all design goals
are satisfied, all penalty functions and thus the CF itself
have the value zero.

5.1 Test cases

The performance of DESA method was tested on 7 real-
world IC design problems and compared with the per-
formance of the multistart COMPLEX method. We will
describe in detail only the first case (damp1) which is a
differential amplifier circuit. The circuit topology is de-
picted by Fig. 1.

There are 27 optimization variables:

e 3 resistors — 3 optimization variables

L

B R R R
|

w | e G @

ol | e 4 L o
ke =n
A

M.\s’_{;] m@

Fig. 1 The topology of the dampl test circuit

e 2 capacitors — 2 optimization variables

e transistors NMO and NM1 should be identical —
2 optimization variables (width and length)

e transistors NM3, NM5, NM7, and NMS8 should be
identical — 2 optimization variables (width and
length)

e transistors PMO and PM1 should be identical — 2
optimization variables (width and length)

e transistors PM2, PM3, PM5, and PM10 should be
identical — 2 optimization variables (width and
length)

e transistors PM9 and PM11 should be identical —
2 optimization variables (width and length)

e transistors NM2, NM4, NM6, PM4, PM6, and
PM7 — 6 - 2 = 12 optimization variables (widths
and lengths)

In this case we do not optimize transistor multipliers.

The properties which we are interested in are: circuit
area, current consumption, AC gain, unity gain band-
width, bandwidth, phase margin, gain margin, maximal
derivative of gain magnitude, output voltage swing, DC
gain, settling time, overshoot, slew rate, rise time, and
fall time.

In order to measure these properties we need to perform
the following analyses: an operating point analysis, a
DC analysis, an AC analysis, and a transient analysis.

We only consider a single corner point with typical
model parameters and ambient temperature of 27 de-
grees centigrade.

The remaining cases will be described more briefly.
The second case (damp1-5c¢) optimizes the same circuit
as the first case, with the same optimization parame-
ters and design goals, but considers five different corner
points to account for varying environmental conditions.

The third case (Ifbuffer) is a circuit with 36 optimization
parameters (32 transistors, 1 capacitor and 1 resistor). It
requires an OP, an AC, a DC, and a transient analysis to
measure 13 circuit properties chosen as design goals.
The case considers a single corner point.

The fourth case (Ifbuffer-5c¢) is the same as the third one
but considers five different corner points.

The next case (nand) is a simple NAND gate element
with only 3 optimization parameters (4 transistors) and

considers 3 corners. The case requires an OP analysis
and two transient analyses to measure 9 circuit proper-
ties.

The delay case (delay) has 12 optimization parameters
(6 transistors) and a single corner point. It requires an
OP analysis and a transient analysis to obtain 6 consid-
ered circuit properties.

The last case (damp2) is another amplifier circuit with
15 optimization parameters (9 transistors, 1 capacitor
and 1 resistor) and 14 corner points. We perform an
OP, a DC, two AC, a transient, and a noise analysis to
measure 13 circuit properties.

All considered test cases were optimized using the de-
fault parameter values for both methods. The methods
were compared in terms of the final solution quality and
the number of CFE needed to reach the solution. Since
the optimization is extremely time consuming, every
circuit was optimized only once.

5.2 Results

Optimization results are given in Table 1. For every
case the number of design variables (VARS), the num-
ber of design goals (GOALS), and the number of corner
points (CORNERS) is given. The table shows the num-
ber of CFE needed to reach a point with the given CF
value, the CF value of the final solution, the number
of CFE needed to find the final solution, and the num-
ber of CFE when the method was terminated. For the
multistart COMPLEX method the number of restarts
needed to reach a particular solution is given in paren-
theses. Circuits for which the final CF value is zero
have satisfied all the design goals and the optimization
was stopped at that time even though the convergence
has not occurred yet.

Tab. 1 IC optimization results

L= |

multistart

DESA
COMPLEX

dampl CFE forCF < 1 5843 5208 (2)
CFE forCF < 0.5 7818 22699 (6)
VARS=27 final CF 0 0.087
GOALS=15 CFE for minimal CF 63 863 68 471 (15)
CORNERS=1 final CFE 63 863 100 000 (24)
dampl-5¢ CFE for CF < 10 2490 1356 (1)
CFE for CF < 5 3598 21281 (5)
VARS=27 final CF 1.806 3.425
GOALS=15 CFE for minimal CF 250 021 231312 (55)
CORNERS=5 final CFE 300 000 300 000 (73)
Ifbuffer CFE for CF < 10 1781 414 (1)
CFE forCF < 1 9523 1339(1)
VARS=36 final CF 0 0.512
GOALS=13 CFE for minimal CF 79377 3310(1)
CORNERS=1 final CFE 79377 100 000 (24)
Ifbuffer-5¢ CFE for CF < 10 1941 989 (1)
CFE forCF < 5 5852 13523 (4)
VARS=36 final CF 2.330 4313
GOALS=13 CFE for minimal CF 229 658 157 612 (41)
CORNERS=5 final CFE 300 000 300 000 (78)
nand CFE for CF < 500 282 40 (1)
CFE for CF < 200 507 94 (1)
VARS=3 final CF 166.641 166.686
GOALS=9 CFE for minimal CF 2208 5818 (47)
CORNERS=3 final CFE 2986 10 000 (81)
delay CFE for CF < 20 - 103 38 698 660 (1)
CFE for CF < 10 - 103 84302 21101 (28)
VARS=12 final CF 0 6 183.500
GOALS=6 CFE for minimal CF 183 687 114794 (143)
CORNERS=1 final CFE 183 687 200 000 (250)
damp2 CFE for CF < 20 989 420 (1)
CFE for CF < 10 11282 3926 (3)
VARS=15 final CF 5.926 7.487
GOALS=13 CFE for minimal CF 251244 326 011 (231)
CORNERS=14 final CFE 365 343 500 000 (352)

It can be seen from the table that DESA outperforms the
multistart COMPLEX method on all considered cases

in terms of the final solution quality (final CF). Since
the multistart COMPLEX method is designed to run
without limitations on the number of CFE, it was man-
ually stopped once the maximal number of CFE was
reached. For DESA the convergence can occur earlier,
depending on the stopping criteria described in section
4.8. The multistart COMPLEX method was allowed to
run at least as long as DESA.

For the first case (damp1) DESA was able to find a so-
lution that satisfied all the design specifications using
63 863 CFE. The multistart COMPLEX method per-
formed 15 restarts with approximately the same num-
ber of CFE. Since it did not satisfy the design goals, it
was allowed to perform the additional 9 restarts but was
still unable to find a better solution even after 100 000
CFE.

In the second case (damp1-5c¢) neither method was able
to satisfy all the design goals. Multiple considered cor-
ner points mean that a more robust circuit is required
which may not be possible to obtain with the given
topology, parameter bounds, or design goals. The prob-
lem with several corners is much more complex and
more CFE are required to find good solutions. In this
case both methods were run until the CFE limit was
reached. The limit was set to 300 000 CFE. Although
the design goals were not completely satisfied, DESA
was still able to find a better solution than the multistart
COMPLEX method.

In the third case (Ifbuffer) DESA was again able to
find the global minimum. It required 79 377 CFE. The
progress of the multistart COMPLEX method was very
fast and it found a fairly good solution in the first run.
But even after it was allowed to perform more CFE than
DESA, it was unable to find the global minimum.

In the fourth case (Ifbuffer-5¢) both methods failed to
satisfy all the design goals. They were both termi-
nated after the CFE limit was reached, which was set
to 300 000. Despite 41 restarts the multistart COM-
PLEX method was unable to find a better solution than
DESA.

The next case (nand) was the smallest among all the
considered cases. Again neither method was able to
find a solution that would satisfy all the design goals.
DESA reached the termination condition after 2 208
CFE. The multistart COMPLEX method was allowed
to perform 10 000 CFE (81 restarts) before it was ter-
minated but its final CF value was still slightly higher.

For the delay case, DESA found the global minimum
after 183 687 CFE. The initial progress of the multi-
start COMPLEX method was considerably faster. It
was able to perform many restarts before DESA got
even close to solutions with low CF values. But slow
initial progress implies that the method searches more
thoroughly through the search space. This improves its
chances of finding the global minimum. The multistart
COMPLEX method was allowed to run even longer but
despite 250 restarts the final CF values was still rather
high.

The last case (damp2) is very complex due to a large
number of corner points. Both methods failed to satisfy
all the design goals. DESA reached its termination
conditions after 365 343 CFE. The multistart COM-
PLEX method again exhibited fast initial progress.
Even after using considerably more CFE than DESA
and despite 352 restarts it was unable to find a better
solution.

We will discuss the optimization results in detail for the
first case only (damp1). Table 2 shows the desired and
measured properties at the final solution for both meth-
ods. One can see that both methods were able to satisfy
most of the design goals. The multistart COMPLEX
method found the solution where some of the properties
are even better than those found DESA. This however
comes at a price of not satisfying the output swing re-
quirement. DESA on the other hand was able to satisfy
all the design goals with a considerably lower number
of CFE.

Tab. 2 Results for damp1 case

multistart

Measurement
COMPLEX

‘ woul ‘ DESA ‘

circuit area < 10~ 3m? 810 Im?2 5.95 - 10~ Im?2
current
i < 1mA 437 10~ %A 530 - 10~ 6A
AC gain > 70dB 70.4dB 70dB
unity gain
bandwidth > 5MHz 17.2MHz 15.7MHz
bandwidth > 500Hz 1.38kHz 2.23kHz
phase margin > 607 65.97 90.3°7
‘gain margin > 10° 33.4° 15.6°
max.derivative
of gain
magnitude <0 —104 - 1079 —39.9-10"9
output voltage
swing > 1.6V 1.6V 1.57V
DC gain > 60dB 69.3dB 66.7dB
settling time < 300ns 174ns 168ns
overshoot <1% 696 - 10— 2% 885 - 10 5%
slew rate >5-100v/s | 7.44-10%V/s 7.48 - 100V /s
rise time < 200ns 64.4ns 64.1ns
fall time < 200ns 57.5ns 81.1ns

In order to demonstrate the difficulties of IC optimiza-
tion we calculated the profile of the CF for the dampl
test case. Centered at some initial point we performed
a sweep through all 27 optimization parameters. Fig.
2 shows the profile when sweeping only through 3 pa-
rameters but it is enough to see the problems of IC op-
timization. The curves intersect at a point with x-axis
value zero representing the center point of the profile.
The CF is highly nonlinear and several local minima are
clearly visible in the profile. The sensitivity of the CF
to different parameters varies considerably and noise is
also easy to notice. All these facts make fast gradient
descent methods unreliable and inefficient, and the en-
tire optimization task extremely difficult. When there
are several corner points to consider, the task becomes
even more challenging. The quality of the initial point
(center point of the profile) is quite bad. The CF value
is not zero which means that the solution does not sat-
isfy the design goals. What is more, changing a single
parameter can already produce a point with lower CF
value.

Fig. 3 shows the profile of the same CF for the same
optimization parameters but it is centered at the final so-
lution found by the DESA method. One can still notice

} [—Txcost_opamp_opamp_m5_p1
i |-=-10cost_opamp_opamp ms p2

aaaaaaaaaa (9]

Fig. 2 The profile of the CF, when sweeping through
two of the optimization parameters (centered at the ini-
tial solution).

noise, nonlinearity, and local minima, but the quality of
the final solution (point with x-axis value zero) is also
clear. Changes of any single parameter do not produce
a point with CF value lower than at the center point of
the profile.

Fig. 3 The profile of the CF, when sweeping through
two of the optimization parameters (centered at the final
solution found by DESA method).

6 Conclusions

IC optimization is a very difficult and time consuming
task and requires a careful selection of the appropriate
optimization method. Noisy CF with several local
minima and large search space dictate the use of direct
stochastic global optimization methods. In this paper a
new hybrid global optimization algorithm (DESA) was
presented. It combines good global search capabilities
of the simulated annealing algorithm and the efficient
search mechanism of differential evolution. DESA is
fairly simple to implement and has only a few param-
eters. Since it is a global optimization method, it is
expected to require a large number of CFE. DESA was
implemented in C language as a part of SPICE OPUS
simulation and optimization tool. Experiments were
conducted on seven real-world cases of IC design to

evaluate the performance of the method. Comparison
was made with a version of the simplex algorithm
(multistart COMPLEX method) which is already
integrated as a part of SPICE OPUS and produced
good results for IC design problems. Experimental
results have shown that DESA outperformed the
multistart COMPLEX method in terms of global search
capabilities on all considered test cases.

7 Acknowledgment

The research has been supported by the Ministry of
Higher Education, Science and Technology of the Re-
public of Slovenia within programme P2-0246 - Al-
gorithms and optimization methods in telecommunica-
tions.

8 References

[1] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by simulated annealing. Science,
220:1277-1292, 1983.

[2] R. L. Yang. Convergence of the simulated anneal-
ing algorithm for continuous global optimization.
Journal of optimization theory and applications,
104(3):691-716, 2000.

[3] R. Storn and K. Price. Differential evolution - a
simple and efficient heuristic for global optimiza-
tion over continuous spaces. Journal of global op-
timizazation, 11:341-359, 1997.

[4] G. L. Bilbro. Fast stochastic global optimization.
IEEE Trans. Syst., Man, Cybern, 24(4):684-689,
1994.

[5] D. R. Thompson and G. L. Bilbro. Sample-sort
simulated annealing. IEEE Trans. Syst., Man, Cy-
bern (B), 35(3):625-632, 2005.

[6] A. Birmen, D. Strle, F. Bratkovi¢, J. Puhan, I. Fa-
jfar, and T. Tuma. Automated robust design
and optimization of integrated circuits by means
of penalty functions. AEU-International journal
of electronics and communication, 57(1):47-56,
2003.

[7] http://www.fe.uni-1j.si/spice/.

[8] M. J. Box. A new method of constrained optimiza-
tion and a comparison with other methods. Com-
puter Journal, 8:42-52, 1965.

[9] J. Puhan, A. Blirmen, and T. Tuma. Analogue inte-
grated circuit sizing with several optimization runs
using heuristics for setting initial points. Cana-

dian journal of electrical and computer engineer-
ing, 28(3-4):105-111, 2003.

