
Optimisation Methods in SPICE, a Comparison
Janez PUHAN* Tadej TUMA* Iztok FAJFAR*

Abstract

The field of optimisation is still not appropriately
covered in modern computer programs for circuit
analysis as SPICE. It was originally developed at the
University of California at Berkeley. The last official
release of SPICE 3f4 was published in 1992. It has
numerous bugs, mainly memory leaks. In order to
implement optimisation methods most bugs were
tracked down and fixed.

Several well-known optimisation methods were
implemented. The new command optimize was added
to the interactive command interpreter called Nutmeg
to manipulate with optimisation tasks. The optimize
command represents a general optimisation tool,
which can be used on any circuit with arbitrary cost
function. The syntax of the command is introduced in
the paper. Further five test circuits were optimised
with different methods and a comparison between the
implemented methods is presented. The essential
properties of the optimisation methods in real
optimisation problems are shown.

All simulation files as well as the new compilation
of SPICE may be downloaded from http://fides.fe.uni-
lj.si/spice/.

1 Introduction

Although Berkeley has stopped the development and
maintenance of it’s popular SPICE program in 1992
the freely available code has seen many different
compilations ever since and is still the widest spread
analog circuit simulator. Today there are commercial
versions like ISPICE from Intusoft
(http://www.intusoft.com) or PSPICE from OrCad
(http://www.orcad.com) but there are also many
freeware compilations for the Windows as well as the
Linux platform. All this different products have one
thing in common: their numerical core is more or less
the untouched Berkeley pre-ANSI C code from 1992.
The numerical methods implemented by Berkeley are
very effective and still unsurpassed in their
sophistication. There are great differences however in
the graphical user interface, the libraries, the
documentation and the technical support.

We are also developing and supporting our own

* Fakulteta za elektrotehniko, Univerza v Ljubljani, Ljubljana,
Slovenija

SPICE compilation (http://www.fe.uni-lj.si/spice) with
the main purpose of adding a general analog
optimisation tool. We first had to build our own GUI
then we ran into numerous memory leaks and other
bugs. These bugs are intrinsic to any Berkeley SPICE
derivative and are usually harmless, just wasting
memory. In optimisation loops however thousands of
different analyses must be run, so the wasted memory
becomes a real problem. We didn’t find a single
compilation, which could run the following simple
script without constantly loosing memory:

while 1
 rusage
end

The while loop should run forever reporting the
system memory usage. There is no reason why the
reported number constantly increases. Memory leaks
are not bound to this particular script, of course, but
are spread all over the code. It took us over a year to
fix this kind of bugs but after that we could finally
concentrate on our primary goal: the implementation
of different optimisation methods. Today, you can
choose from 11 different methods.

2 The methods

We have selected a set of 10 most promising
optimisation methods from theory and we have topped
the selection with a cost function evaluation option.
The later could be considered a brute force
optimisation algorithm and is intended for plotting up
to three dimensional parameter spaces in
Mathematica. With more dimensional cost functions
the computation effort becomes intolerable however.

• Steepest descent algorithm
• Newton’s method
• Davidon-Fletcher-Powell’s method [1, 2]
• Monte Carlo algorithm
• Grid search algorithm
• Coordinate axes search algorithm
• Powell’s method [3]
• Hooke-Jeeves’ method [4]
• Constrained simplex method [5]
• A simple genetic algorithm [6]
• Cost function evaluation over the entire

parameter space

We were very careful not to change any SPICE or
Nutmeg command in our compilation, since they have

become an unofficial standard in circuit analysis.
However we had to add at least one command -
optimize. Its syntax is consequently rather complex:
optimize [command]

command =
 analysis [number delete |
 number expression]
 | cost [expression]
 | implicit [number delete |
 number expression]
 | method [definition]
 | parameter [number delete |
 number [element name] [parameter name]
 [low value] [high value]
 [initial value]]
 | number_of_iterations value

definition =
 steepest_descent [r value{1.5}]
 [method quadratic | golden | fibonacci]
 [epsilon value{0.1}]
 [transformation no | sin | atcctg]
 [number_of_iterations value{100}]
 [gradient0 expression]
 [gradient1 expression]
 [...]
 | newton [r value{1.5}]
 [method quadratic | golden | fibonacci]
 [epsilon value{0.1}]
 [number_of_iterations value{100}]
 | davidon_fletcher_powell [r value{1.5}]
 [method quadratic | golden | fibonacci]
 [epsilon value{0.1}]
 [number_of_iterations value{100}]
 [modification no | modified | first |
 second]
 [gradient0 expression]
 [gradient1 expression]
 [...]
 | monte_carlo [r value{1.5}]
 [method no | quadratic | golden |
 fibonacci]
 [epsilon value{0.1}]
 [number_of_iterations value{100}]
 | grid_search [level 2 | 3]
 [alpha value{1.3}]
 [epsilon value{0.1}]
 | axis_search [r value{1.5}]
 [method quadratic | golden | fibonacci]
 [epsilon value{0.1}]
 [number_of_iterations value{100}]
 | powell [r value{1.5}]
 [method quadratic | golden | fibonacci]
 [epsilon value{0.1}]
 [number_of_iterations value{100}]
 | hooke_jeeves [alpha value{1.3}]
 [epsilon value{0.1}]
 | complex [k value]
 [alpha value{1.3}]
 [size value{0.1}]
 | genetic [popsize value{10}]
 [lchrom value{1}]
 [maxgen value{19}]
 [pcross value{0.6}]
 [pmutation value{0.03}]
 [scalling value{2}]
 | parameter_space
 [outfile filename{opt.out}]
 [npts0 value{2}]
 [npts1 value{2}]
 [...]

Instead of going into more details we will now present
some results of our optimisation tool.

3 Five Cases

One major difficulty with general analogue
optimisation is the lack of good benchmark cases with
known results. If the problem is simple enough, the
cost function can be evaluated (maybe even plotted) in
a very dense grid so the behaviour of different
optimisation methods can be tested.

In this way we have verified our optimisation tool,
but the really interesting question is, will it work with
extremely large problems? Suppose we have a circuit
with a cost function of 20 unknown variables. In order
to survey at least some properties of the cost function
we would have to analyse the circuits in some 10
points per variable, necessitating 1020 SPICE runs! In
other words, there is no general way to know how an
arbitrary cost function looks like, much less to
discover its global minimum. So we made the
following assumption. In theory many circuits are
considered optimal for certain purposes. If these
purposes are correctly translated into a proper cost
function, then the optimisation process should
converge to the known circuit parameters.

Here is our test circuit selection. For circuit
specifics please refer to our homepage..

1. Schmidt trigger. This is a simple circuit with two
bipolar transistors and a 2 dimensional cost
function defining the edge points of the
hysteresis. There is one simple implicit
constrains, the cost function can be plotted.

2. Transistor amplifier. Another simple problem
involving a transistor amplifier stage with a 2
dimensional cost function, which is looking for
the most linear response with an implicitly
constrained minimal gain factor.

3. Triangular to sine wave converter. The converter
consists of a diode cascade approximating the
sine wave with 7 linear segments. The optimal
segment distribution is known from theory. The
cost function is 12 dimensional.

4. Fifth order analogue filer. Again the optimal
result is known from theory and should yield an
elliptic pole distribution for the given circuit
topology. This is a 15 dimensional optimisation
case.

5. Bass reflex loudspeaker box. The problem of an
optimal bass reflex enclosure and radiation vent
is considered. The cost function is only 3
dimensional but the parameter space is heavily
implicitly restricted.

Table 1: Summary of results

Number of iterations Minimal cost function value
Circuit number 1 2 3 4 5 1 2 3 4 5
From theory 32µ 0.084
Steepest descent 29 60 114 137 4 0.0175 0.3260 74µ 63.800 12.2100
Newton’s method 7 7 411 137 10 0.2270 0.9010 498µ 67.400 12.2100
Davidon-Fletcher-Powell 30 51 301 89 4 0.0175 0.3360 38µ 64.000 12.2100
Monte Carlo 150 200 4000 8000 1000 0.0064 0.0009 38µ 8.910 0.7477
Grid search 121 173 4092 7764 265 0.0159 0.0008 11µ 0.920 0.9632
Axes search 50 51 1430 6280 89 0.0064 0.0009 21µ 18.800 0.9645
Powell’s method 54 57 713 1590 92 0.0064 0.0009 21µ 23.300 0.9645
Hooke-Jeeves’ method 69 103 1320 1498 233 0.0008 0.0011 9µ 1.940 0.9630
Complex 69 68 3931 2195 168 0.0031 0.0008 6µ 0.000 0.5643
Genetic 168 224 4224 8190 110 0.0056 0.1140 35µ 2.540 0.9007
Parameter space 10201 10201 8000 0.0005 0.0008 1.1045

We have run all eleven optimisation methods on
all five test cases. The optimisations were done in all
cases with default parameters and with the same initial
parameter values. There was absolutely no fine-tuning
of the different methods in order to keep the
comparison fair. Nevertheless, it is very difficult to
judge the methods by their default parameters and by a
common initial parameter vector.

Table 1 shows a rough summary of our results.
Not all methods have reached the same local
minimum, as can be seen from the cost function
columns. The most robust methods for our five cases
are the Constrained simplex and Hooke-Jeeves’
method. To show the complexity of the test cases we
shall examine just the one method/circuit combination,
which is marked in table 1.

4 The fifth order filter

Let us consider in detail the optimisation of the fifth
order analogue filter with the constrained simplex
algorithm. The circuit topology is presented in Figure
1. We set all capacitances to the same value 2.7nF.
The values of all 15 resistors are subject to
optimisation as can be seen from table 2.

The cost function is defined by the boundaries in
Figure 1. We tolerate a 0.7dB ripple, further we
demand at least 60dB damping and a cut-off
bandwidth from 750Hz and 1KHz. The cost function
value is actually the integral of the ac response outside
these limits. The table 2 summarises the explicit
constraints and the initial values of each parameter.
After 2195 iterations the complex method stops with a
zero valued cost function and optimal resistor values
which are quite different from the expected
theoretically determined values.

Figure 1: Active low-pass RC filter

Let us examine the Bode response of the initial
iteration (marked as unoptimised), the optimised
circuit and the theoretically designed parameters
(marked as analytic) in Figure 2.

Although the optimal resistor values are quite
different from the theoretically determined the cost
function is even a bit lower than expected. The ac
response of the optimised filter accomplishes all
requests determined in cost function. Theoretical and
optimised filter have equivalent ac responses. The
only difference is slightly higher damping factor at the
optimised filter.

Table 2: Resistor values (values are rounded)

+
vin
ac

C04 2.7nF

v(1) -

+

+

vcc
15V

4

v(8)

1

5

R01

20

X1 ua741

12

14

3

R02
v(3)

R06

R04

C01 2.7nF

R07

R05

C03
2.7nF

C02
2.7nF

+

-

X2 ua741
12

14

7

R03

6

R08

9

8

R09

12

14

+
vee
-15V

|A|[dB]
0.7dB

750 1k

60dB

f[Hz]1.38k

R10

R14

R1210

C07
2.7nF

25

R11

C05
2.7nF

11

15

C06
2.7nF

17

R13
R15

+

-

X3 ua741
12

14

16

v(16)

cost function

Par. Exp. Constr. Initial Optimal Theoret.
R01 10k ÷ 100k 50k 29.7k 19.6k
R02 100k ÷ 1meg 500k 183k 196k
R03 500 ÷ 5k 2.5k 2.21k 1k
R04 50k ÷ 500k 250k 293k 147k
R05 100k ÷ 1meg 500k 187k 154k
R06 10k ÷ 100k 50k 16.2k 37.4k
R07 10 ÷ 100 50 36.1 71.5
R08 100 ÷ 1k 500 212 260
R09 100 ÷ 1k 500 732 740
R10 50k ÷ 500k 250k 200 110k
R11 100 ÷ 1k 500 390 402
R12 50k ÷ 500k 250k 55.7k 110k
R13 10k ÷ 100k 50k 24.7k 27.4k
R14 10 ÷ 100 50 38.6 40
R15 500 ÷ 5k 2.5k 2.3k 960

Figure 2: The Bode response of the filter with initial,
optimal and theoretical values of resistors.

5 Conclusions

The implemented optimisation methods have been
tested on five different circuits. The outcome was not
always successful which is due to the default
parameters of each method. We have also spent a lot
of time tuning the parameters of all methods and
searching for more convenient initial points. We have
also combined several methods; for example we have
used the Genetic algorithm to find a suitable initial
point for the Steepest descent algorithm. It is our
conclusion, that almost any optimisation method can
be successfully used on any problem, providing the
user has some feeling for the nature of the circuit as

well as for the properties of the employed optimisation
method.

The later assumptions is actually rather demanding.
Our optimisation command is far from being
foolproof. In order to optimise complex circuits, the
user must first study the particular optimisation
method from theory. Only then he will fully
understand all the optimize command options and be
able to use them precisely.

Each of the optimisation cases in table 2 has been
completed in less 10 minutes. However, with large
circuits, complex cost functions and a large number of
optimisation parameters the entire optimisation
process may become very time and memory
consuming.

[1] W. C. Davidon, "Variable metric method of
minimisation", Report ANL-5990 (rev.),
Argonne National Laboratory, Argonne, Ill.,
1959

[2] R. Fletcher, M. J. D. Powell, "A rapidly
convergent descent method for minimisation",
Computer Journal, Volume 6, pages 163 -
168, 1963

[3] M. J. D. Powell, "An efficient method for
finding the minimum of a function of several
variables without calculating derivatives",
Computer Journal, Volume 7, pages 155 -
162, 1964

[4] R. Hooke, T. A. Jeeves, ""Direct search"
solution of numerical and statistical
problems", Journal of ACM, Volume 8, pages
212 - 229, 1961

[5] M. J. Box, "A new method of constrained
optimisation and comparison with other
methods", Computer Journal, Volume 7,
pages 42 – 52, 1965

[6] David E. Goldberg, "Genetic Algorithms in
Search, Optimisation & Machine Learning",
Addison-Wesley Publishing, 1989

