
OPTIMISATION OF ANALOG CIRCUITS WITH SPICE 3F4

Janez Puhan Tadej Tuma

University of Ljubljana, Faculty of Electrical Engineering, Tr�aška 25, 1000 Ljubljana, Slovenia,
janez.puhan@fe.uni-lj.si, tadej.tuma@fe.uni-lj.si

Abstract - In the paper four approaches of upgrading analog
circuits analysis tools (SPICE was used) with optimisation
loops are compared. In the first approach the optimisation
algorithm is coded in Mathematica, which calls SPICE for
every circuit analysis. In the second approach the algorithm
is coded in Nutmeg. (Nutmeg is an interpreter designed as a
user interface for SPICE, but it has all properties of a
programming language.) In the third approach the
algorithm is again coded in Nutmeg, but all computation
(for example computation of the cost function) is performed
by extern programs. And finally in the fourth approach the
optimisation algorithm is coded in C. We compared
computation times of all different approaches with a
constrained direct optimisation method on a simple circuit.
It turned out that the approach through Mathematica is
elegant, but hopelessly slow. Both approaches through
Nutmeg are compact, but unfortunately Nutmeg yields
numerous bugs. The best results were obtained with C
programs.

I. INTRODUCTION

Digital computers have been successfully used in circuit
design for more decades. Analysis and simulation of
different kinds of analog and digital circuits can be done.
The most popular software package for computer aided
design in this moment is SPICE.

Optimisation methods are the next step in automatic
design of analog circuits. They require a given circuit
topology and partially circuit parameters. Some
parameters are left undetermined. The user gives his
»wishes« about some circuit properties in a form of a cost
function instead of determining parameters. The
optimisation method then calculates the most appropriate
values for the undetermined parameters [1].

SPICE is very reliable and has a lot of users around
the world, but the latest version (we used Berkeley’s
SPICE version 3f4) still does not offer optimisation.

There arises the idea about upgrading SPICE with
optimisation methods. The main problem of optimisation
is computing time, because a lot of circuit analyses have
to be done. We tried to upgrade SPICE with optimisation
loops in four different ways. The approaches using
Mathematica, Nutmeg, Nutmeg with external programs
and C program were tested. We were most interested in

computing time.

II. DECSRIPTION OF DIFFERENT APPROACHES

As it was mentioned in the introduction we tried to
upgrade SPICE in four different ways. We looked for the
tool, which would allow easy description of the cost
function and would be programmable at the same time.
More or less difficult mathematical relations are usually
present in the cost function. Mathematica [2] is on the
other hand very appropriate for description of such
mathematical functions. It also has its own interpreter
programming language. So the optimisation loop was
coded directly in Mathematica. For every circuit analysis
SPICE was called separately. The communication
between Mathematica and SPICE was established by two

Figure 1: Approach with Mathematica

files. In the input file for SPICE Mathematica prepares
data for the next circuit analysis. SPICE gives results in
output file, which is then read by Mathematica. The
situation is illustrated in figure 1.

In the second approach the algorithm was coded in
Nutmeg [3]. Nutmeg is an interpreter language, which
was designed as an interactive user interface for SPICE.
It has all the properties of a real programming language

Figure 2: Approach with Nutmeg

and should therefore be convenient for coding
optimisation loops. The communication through files
would also be avoided. This solution is very compact and
is shown in figure 2.

Unfortunately Nutmeg has serious problems with
memory allocation. As a consequence of this problem,
Nutmeg yields numerous bugs. So it is not capable to
process a lot of variables. This is the reason why we tried
to unload Nutmeg. All computation (for example
computation of cost function ...) is performed by extern
programs instead of Nutmeg. But communication through
files is again introduced between SPICE and the extern
programs. This approach is illustrated in figure 3.

Figure 3: Nutmeg with extern programs

Nutmeg was free from the main part of computing in
figure 3. But it was still not enough and the problem with
memory allocation continued. So we finally tried with our
own program. The source code is written in C language.

Figure 4: Approach with C program

The whole concept is similar to the first approach with
Mathematica. Again SPICE is called for circuit analysis.
The data flow between SPICE and C program again goes
through input and output files (figure 4).

III. OUR SIMPLE BENCHMARK CASE

All four approaches were tested on a simple circuit. A
transistor amplifier with a bipolar npn transistor in
orientation with common emitter was used. The circuit is
shown in figure 5. We wanted to amplify the input
current. Its amplitude does not exceed 100µA

i I M1 100≤ = µA (1)

Figure 5: Transistor amplifier

The amplifier is supplied with direct voltage Vcc = 12V
and is built around a standard bipolar transistor 2N3510.
The resistors R1 and R2 determine the operating point and
the feedback factor of the amplifier. They also have an
influence on all other properties of the amplifier (input
and output impedance, gain, degree of non-linearity,
upper frequency limit, noise spectrum etc.). The output
voltage is in general given by equation (2). We are

v v i R R3 3 1 1 2= (, ,) (2)

interested in non-linear distortion of the output. We can
estimate, that all other properties will be in acceptable
boundaries, if the resistances R1 and R2 are inside these
intervals

5 501k kΩ Ω≤ ≤R
20 2002k kΩ Ω≤ ≤R (3).

Figure 6: Direct transfer functions

Equation (3) defines explicit constrains. These constrains
are often defined by technology. So, in this example, we
search for the couple R1 and R2 inside these intervals,
which give the most linear response and a gain factor
defined as

A
v I R R v I R R

I
M M

M
=

− −3 1 2 3 1 2

2
(, ,) (, ,)

 (4)

must satisfy the implicit constrain

A ≥ 20 kV A (5)

at the same time. The gain and non-linear distortion will
be studied on a direct transfer function, which is also
competent for low frequencies. Circuit analyses in all four
corners of the parameter space were done for illustration
and are shown in figure 6.

A unique criterion, which values of R1 and R2 are the
best, is needed in the first place. In our case the rate of
non-linearity have to be defined. The cost function is
defined as

E R R
Ai v i v i

Ai i

I

I

I

I
M

M

M

M
(,)

(() ())

()
1 2

1 3 1 3
2

1

1
2

1

0
=

− +
−

−

∫

∫

d

d
 (6).

Optimisation methods should find the minimum of a
cost function with respect to explicit and implicit
constrains. The constrained simplex optimisation method
[4] was chosen. It is one of the most robust direct
optimisation methods and is fairly simple from the
programmers point of view. So this method was coded in
all four approaches.

In our case the parameter space is two dimensional, so
the cost function can be plotted. In figure 7 the cost

Figure 7: Cost function

function E(R1, R2) is shown as a surface over explicitly
constrained parameter plain. Transfer functions in all
four corners were shown in figure 6. The surface is
shaded where implicit constrains (equation (5)) are
violated.

IV. RESULTS

The simple circuit introduced in previous paragraph was
optimised in our four ways. The initial simplex was

always the same (R1 = 50kΩ R2 = 200kΩ; R1 = 40kΩ R2

= 200kΩ; R1 = 45kΩ R2 = 170kΩ; R1 = 50kΩ R2 =
150kΩ) and the optimal values for the resistances R1 and
R2 were sooner or later always found (R1opt. ≅ 25.8kΩ
R2opt. ≅ 33.85kΩ (figure 7)). To obtain this optimal
values approximately 107 circuit analyses were needed.
All four approaches were tested on a Hewlett-Packard
Apollo Series 400 Model 425e computer. Computation
time was of our main interest. Figure 8 shows computing
time needed by different approaches. As we can see from
figure 8 Nutmeg is the fastest. The percentage of time

Math Nutmeg Nutmeg&C C
0

20
40
60
80

100
120
140

Math Nutmeg Nutmeg&C C

Total time [sec]
Number of anayses

Figure 8: Computing time

Mathematica 1.282 seconds / iteration
Nutmeg 0.230 seconds / iteration
Nutmeg & C 0.625 seconds / iteration
C 0.746 seconds / iteration

59%

41%

Nutmeg
SPICE

Figure 9: Distribution of computing time for Nutmeg

Nutmeg & C

31%

41%

14%

14%

Nutmeg
Input/Output
Extern programs
SPICE

C

1% 5%

94%

C
Input/Output
SPICE

Figure 10: Distribution of computing time for Nutmeg
& C and C

needed for circuit analyses and Nutmeg overhead is
shown in figure 9. Nutmeg & C and C approaches are
both much slower than Nutmeg, and they have
approximately the same total time. Distribution of
computing time for those two approaches is shown in
figure 10. Mathematica is the slowest approach, so it
would be interesting to see where Mathematica loses
time. In figure 11 distribution of computing time for
Mathematica is shown.

13%

17%

71%

Mathematica
Input/Output
SPICE

Figure 11: Distribution of computing time for
Mathematica

We can see, that Nutmeg approach spends more than
half of computing time for itself. Nutmeg is not a true
programming language and that is the reason for such
waste of time. The same problem occurs with the Nutmeg
& C approach. Extern programs and circuit analyses both
take less than one third of the computing time. Again
Nutmeg spends a lot of time for itself, and a lot of time is
spent for reading and writing input and output files. C
and Mathematica approaches on the other hand spend the
major of computing time for circuit analyses.
Mathematica is slower, because it is an interpreter. In
those two approaches SPICE is called for every circuit
analysis separately. The consequence of this is longer
time needed for one circuit analysis. This is shown in
figure 12, where times needed for 100 circuit analyses in
both cases (separate and non-separate calls) are
compared.

Separate Non-
separate

0
10
20
30
40
50
60
70

Separate Non-
separate

Total time [sec]

Figure 12: Time needed for 100 circuit analyses

V. CONCLUSIONS

It turned out, that Nutmeg has serious problems with
memory allocation. For example a simple loop

let n = 1
dowhile n > 0
end

ends after finite number of steps. The reason is
uncontrolled memory allocation, which results in lack of
memory and memory error at the end. So bigger circuits
can not be optimised with Nutmeg. Even the simple
example in this paper was hard to optimise because of
memory errors. The second drawback of Nutmeg is its
interpreter nature. It can be expected, that in bigger
circuit Nutmeg would spend more time for itself and less
for circuit analyses. So it would become relatively slower.
Exactly the same problems occur in Nutmeg & C
approach. The approach through Mathematica is very
elegant. The cost function can be described »user
friendly«. However Mathematica is again an interpreter
and therefore slower than C. Both, C and Mathematica,
also call SPICE separately for every circuit analysis,
which results in significant time loss. That is the main
drawback of the C approach, and partly Mathematica
approach as well.

For effective circuit optimisation Nutmeg would have
to be improved, maybe even rewritten. Writing new
optimisation tools in C, which would use SPICE for
circuit analysis, would be maybe even more appropriate.
SPICE would have to become a »daemon«, which would
analyse circuit when needed. Loading and closing SPICE
for every circuit analysis would be avoided this way.

References
[1] R. K. Brayton, R. Spence, Sensitivity and

Optimisation, Elsevier Scientific Publishing
Company, Amsterdam, 1980

[2] S. Wolfram, Mathematica, A System for
doing Mathematics by Computer, Addison-
Wesley Publishing Company, Redwood City,
California, 1991

[3] T. Quarles, A. R. Newton, D. O. Pederson,
A. Sangiovanni-Vincentelli, SPICE3 Version
3f4 User’s Manual, University of California,
Berkeley, California, 1989

[4] M. J. Box, A new method of constrained
optimisation and comparison with other
methods, Computer Journal, vol. 7, pages 42-
52, 1965

