
Simulating Asynchronous Parallel Circuit Optimization Algorithms

Árpád Bűrmen, Janez Puhan, Iztok Fajfar, Andrej Nussdorfer, and Tadej Tuma
Faculty of Electrical Engineering

University of Ljubljana
Tržaška 25, 1001 Ljubljana, Slovenia

arpadb@fides.fe.uni-lj.si

Abstract

The idea of asynchronous parallel optimization oc-
cured during the efforts to develop efficient parallel
optimization algorithms. Since asynchronous paral-
lel algorithms are more difficult to analyse than their
synchronous counterparts, the development of such
an algorithm benefits greatly from practical experi-
ence. The only way to assess the practical value of
a particular algorithm is to try it out on established
test function suites and real-world problems. In or-
der to test an algorithm it must be implemented and
run on a cluster of workstations. Since development
and debugging for such platforms is not an easy task,
we expect to accelerate the process of developement
by utilizing a simulation tool where the developer can
concentrate on the algorithm itself without wasting
time on various practical implementation issues. We
present a simple model of a parallel optimization en-
vironment. Based on the model the simulation tech-
nique is presented. The simulator is implemented in
MATLAB and its use is illustrated with an example.

1 Introduction

In order to accelerate the search for a minimum
of a cost function in the process of optimization, the
idea to divide the work among several workers oc-
curred. First attempts resulted in synchronous paral-
lel algorithms, where workers exchanged information
after reaching so called synchronisation points in the
algorithms they were executing. Since the time re-
quired to evaluate the cost function can vary greatly
from point to point in the search space, several work-
ers that finished sooner had to wait for the slower
ones to reach the syncronisation point (synchronisa-
tion penalty). The idle time of individual workers
resulted in an overall smaller acceleration.

The variations of evaluation time are not the only
cause for degraded performance of the system. Com-
munication among workers introduces delays and
when these delays become comparable to the time

between successive syncronisation points, their im-
pact on the performance becomes significant. A so-
lution for the latter problem is to assign multiple
cost function evaluations to individual workers which
moves the synchronisation points further appart and
reduced the effect of communication delays [1].

The aforementioned solution can’t cope with the
synchronisation penalty arising from the variations of
the evaluation time. Therefore an idea occured to re-
move the syncronisation points from the algorithm
and communicate the information as soon as it is
available [2]. The approach resulted in asynchronous
parallel optimization algorithms. Such algorithms are
more difficult to design and analyze and practical
experience plays a great role in their evolution [4].
In order to test a particular algorithm it must be
implemented and run on a cluster of workstations.
The developement cycles for parallel distributed pro-
grams are generally longer than for single-processor
programs since one has to consider several practical
issues that are of little or no relevance to the algo-
rithm itself. Obtaining a cluster of workstation is also
associated with relatively high costs. These facts all
speak in favor of a simulation-based approach.

The remainder of this paper is organized as fol-
lows. First a simple model of a parallel optimization
system is presented. The principles of event driven
simulation [3] are explained and associated with the
problem of simulation of asynchronous parallel opti-
mization algorithms. Implementation details regard-
ing the simulator are given and its use is illustrated
by simulating optimization runs of the asynchronous
parallel pattern search (APPS) algorithm [4, 5].

2 A Model of a Parallel Optimization
System

Let UM denote the set of all possible messages M
that can be communicated by any of the workers. A
message consists of information such as the position
in the search space (member of Rn), cost function
value (member of R), etc.



Every worker Wi from the set of available work-
ers W = {W1,W2, ...,Wp} in such an optimization
system has a state Si associated with it. The state
represents the memory of a worker. Let U i

S denote
the set of all possible states worker Wi can be in.

A combination of time, source, destination, and
message is called an event (E = (t, s, d, M), t ∈ R,
s ∈ {1, ..., p}, d ∈ {0, 1, ..., p}, M ∈ UM ). Destination
is the number of the worker that will receive the mes-
sage. 0 has special meaning. Events with destination
0 are sent to all workers (broadcast). Let UE denote
the set of all possible events (eq. (1)).

UE = R× {1, ..., p} × {0, 1, ..., p} × UM . (1)

Let UF denote the set of all possible subsets of UE .
A worker (eq. (2)) is a transformation that for some
incoming event Ein = (tin, sin, din,Min) and some
state Sold produces a set of outgoing events Fout and
a new state Snew:

Wi : (Ein, Sold) 7→ (Fout, Snew), (2)
Ein ∈ UE , Fout ∈ UF Sold, Snew ∈ U i

S .

Snew becomes the new state of worker Wi.
Generally tin ≤ tout (causality) and sout = i for

all Eout = (tout, sout, dout,Mout) ∈ Fout are required
from Wi. A worker can respond to an incoming event
with an empty set Fout, meaning that there is no
respone to the incoming event.

tout− tin = δW represents the evaluation time and
can be modelled either deterministically or stochas-
tically. One could even use a simulator and measure
the evaluation time (δW ) for a particular incoming
event in order to accurately simulate the behaviour
of the optimization system.

Up to now we have dealt with the model of a
worker. This is the part that has to be provided by
the algorithm developer. Next comes the modelling of
the communication system. This part depends only
on the characteristics of the platform (e.g. tightly
coupled multiprocessor machine, cluster of worksta-
tions, etc.).

All events from the set Fout are delivered by the
communication system to their destinations. The
communication system is modelled by a transforma-
tion of an individual event E = (t, s, d, M) (which is
a member of Fout produced by Wi) to a set of dis-
tributed events F ′ (eq. (3)).

T : E 7→ F ′, (3)
E ∈ UE , F ′ ∈ UF .

If d 6= 0, F ′ = {E′} and E′ = (t′, s′, d′,M ′) is
composed as follows:

t′ ≥ t, s′ = s, d′ = d, M ′ = M. (4)

If d = 0 (broadcast), F ′ = {E′
1, E

′
2, ..., E

′
p} and

E′
i = (t′i, s

′
i, d

′
i,M

′
i) is composed as follows:

t′i ≥ t, s′i = s, d′i = i, M ′
i = M. (5)

The delay introduced by the communication sys-
tem when delivering an event to a worker (δi

T = t′i−t)
can be modelled deterministically or stochastically.

Now we have a model of a worker and a model
of the communication system. In the following sec-
tion we present the simulation algorithm based on an
event queue.

3 Simulation Algorithm

An event queue Q is a set of events ordered by
time. Enqueueing an event E means that the event
is added to Q. Dequeueing an event E ∈ Q means
that the event is removed from Q.

The oldest event E (with smallest t) in the queue
is dequeued and processed by the simulation algo-
rithm. Processing the event E means sending it to
its destination worker (Wd). The state of worker Wd

is updated and the resulting events from the set Fout

are processed by the model of the communication sys-
tem T . The resulting events are enqueued inQ. Then
the next oldest event is dequeued and the process de-
scribed above is repeated.

4 Initialization

The simulation is initialized by enqueueing p ini-
tialization events with t = 0 in the event queue (one
for every worker). These events carry all the informa-
tion needed by the workers for responding to incom-
ing events. The initialization events are dequeued
by the simulator and distributed to the workers as
the simulation starts Worker Wi responds to the ini-
tialization event by copying the information from the
event into its state Si. In response outgoing events
are generated that are processed by the model of the
communication system T and then enqueued by the
simulator.

5 Simulator Implementation

The simulator is implemented in MATLAB. The
workers are described by a function similar to the
following one:

function [Eout, Sout]=worker(Ein, Sin)
The worker is responsible for setting the output

event’s time by adding the evaluation time δW to the
input event’s time. In the example the evaluation
time is modelled stochasticaly by choosing a random



value from the interval [tlow
W , thigh

W ]. Events (E) and
worker’s state (S) are MATLAB structures. Si is ma-
nipulated only by Wi and can contain arbitrary fields.
All events must have 3 fields: source (s), destination
(d), and time (t). The rest is arbitrary and represents
the message (M) carried by the event.

There is only one worker function. In case the
optimization system is homogeneous, this is all one
needs for describing the worker’s behaviour. In case
the system consists of different workers, the worker’s
number can be obtained from the destination field of
the input event. This is how the simulator choses the
corresponding input state for the worker function.

The simulator is responsible for holding the
worker’s state and managing the event queue. It
sends all events produced by the workers to the model
of the communication system. The resulting events
are then enqueued in Q.

The model of the communication system (eqns.
(3), (4), and (5)) is responsible for adding the com-
munication delay to the events. In case the destina-
tion is the same as the source, the delay is chosen
randomly from interval [tlow1

T , thigh1
T ]. Otherwise the

delay is chosen from the interval [tlow2
T , thigh2

T ]. The
multiplication of broadcast events is also the job of
the communication system model.

The simulator function’s arguments are: the name
of the worker function, the intervals from which the
communication delay is chosen, time when to stop
the simulation, and the set of initialization events
{E1, E2, ..., Ep} that are enqueued at the beginning of
the simulation. The number of workers is determined
from the number of initialization events.

6 Example

The APPS from the convergence analysis paper
[5] was implemented for the proposed simulator. A
simplified stepsize control was used. All workers were
running the same algorithm. Worker Wi holds as its
state Si the best point found in the process of the
search (xi

best ∈ Rn), its associated cost function value
(f i

best = f(xi
best)), the stepsize parameter (∆i), and

the search direction di ∈ Rn.
An init event carries the search direction (d), the

initial point (x), and the initial stepsize (∆). The
same initial stepsize and the same initial point are
sent to all workers. The search directions must posi-
tively span Rn [6]. A point event carries a point (x),
its associated cost function value (f), and the step-
size (∆). The cost function evaluator receives an eval
event carrying a point of origin (x), a direction (d),
and a stepsize parameter (∆). It evaluates the cost
function at point xe = x + ∆ · d. After the evalua-
tion an evalEnd event is sent back with the point of
origin (x), the point of cost function evaluation (xe),

the computed cost function value (fe) at xe, and the
stepsize parameter (∆). See Listing 1 for the APPS
algorithm.

APPS was simulated for the square 2D function,
Rosenbrock 2D function, and Woods 4D function for
various numbers of workers. The initial point for
the square function was [5, 5], for the Rosenbrock 2D
function [−1.2, 1.0], and for the Woods 4D function
[−3,−3,−3,−3]. Initial stepsize (∆initial) was set to
0.03. ∆min was set to ∆initial/220 and ∆max was
set to ∆initial · 27. The evaluation time was a uni-
formly distributed random variable from [0.1s, 0.5s].
The communication delay was also uniformly dis-
tributed from [5ms, 20ms] ([1µs, 5µs] for messages
with s = d).

/* APPS, i-th worker’s algorithm. */
/* E is the received event. */
/* ∆min = ∆initial · 2cmin < ∆initial */
/* ∆max = ∆initial · 2cmax > ∆initial */
/* cmin < cmax; cmin, cmax ∈ Z */

if E is an init event then
di := E.d;
xi

best := E.x;
f i

best := +∞;
∆i := E.∆;
Send an eval event to the local evaluator

with (x := xi
best, d := 0,∆ := ∆i);

else if E is a point event then
if E.f < f i

best then
xi

best := E.x;
f i

best := E.f ;
∆i := E.∆;

end
else if E is an evalEnd event then

if E.fe < f i
best then

xi
best := E.xe;

f i
best := E.fe;

∆i := E.∆ · 2;
if ∆i < ∆min then

∆i := ∆min;
end
if ∆i > ∆max then

∆i := ∆max;
end
Broadcast a point event

with (x := xi
best, f := f i

best,∆ := ∆i);
else if xi

best = E.x then
∆i := ∆i/2;

end
Send an eval event to the local evaluator

with (x = xi
best, d = di,∆ = ∆i);

end

Listing 1: The simplified APPS algorithm.



In the first set of simulation runs the simulation
was stopped after tstop. The results are listed in Table
1. The performance with regard to the obtained cost
function value significantly improves as the number
of workers increases.

Test function p tstop [s] f(x)
Square 2D 4 15 0.3125 · 10−6

Square 2D 8 15 0.1953 · 10−8

Rosenbrock 2D 4 100 0.1250 · 10+0

Rosenbrock 2D 8 100 0.8236 · 10−3

Woods 4D 8 100 0.6079 · 10+1

Woods 4D 16 100 0.2294 · 10+1

Woods 4D 24 100 0.4066 · 10−1

Table 1: Simulation results for the APPS algorithm.
Simulation was stopped after tstop was reached.

In the second set of simulation runs the simulation
was stopped after the cost function dropped below
fstop. The results are listed in Table 2. The time
required to reach cost function value fstop dramat-
ically drops with the increasing number of workers,
indicating that a fair amount of acceleration can be
expected from a parallel asynchronous optimization
system.

Test function p fstop Time [s]
Square 2D 4 1.0 · 10−5 12.2676
Square 2D 8 1.0 · 10−5 10.4614
Rosenbrock 2D 4 0.5 · 10+0 70.3586
Rosenbrock 2D 8 0.5 · 10+0 12.2444
Woods 4D 8 0.8 · 10+0 166.228
Woods 4D 16 0.8 · 10+0 29.7512
Woods 4D 24 0.8 · 10+0 10.3047

Table 2: Simulation results for the APPS algorithm.
Simulation was stopped after f(x) dropped below
fstop.

From Figure 1 it can be seen that although the sys-
tem is asynchronous, the workers are very strongly
coupled. The cost function value and the stepsize
may take different paths on different workers, but
they tend to become equal across all processors ap-
proximately every 0.5s.

Kolda and Torczon prooved [5] that such ”round-
ups” are ensured by stepsize limiting. The APPS
convergence proof is based on this observation. An
interesting point (observed in Figure 1 and other op-
timization runs) is, that the stepsize parameter does
not even come close to its bounds (∆min, ∆max), so
there must be some other mechanism in the algorithm
(that at least assists convergence if not guarantees it)
than the one found by Kolda and Torczon [5].

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

10
−1

10
0

time [s]

f

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

10
−2

10
−1

10
0

time [s]

de
lta

Figure 1: Cost function and stepsize with respect to
time for all workers (Rosenbrock 2D function, APPS
run with 8 workers).

7 Conclusions

The importance of simulation in the design and
testing of asynchronous parallel optmization algo-
rithms was outlined. A simple model of a parallel op-
timization system was created and a simulation algo-
rithm for such systems was developed. The simulator
was implemented in MATLAB and tested with sev-
eral APPS runs involving various numbers of work-
ers and three different benchmark cost functions. In
APPS the ”round-up” effect was demonstrated and
we observed that it cannot be completely explained
by the arguments given by Kolda and Torczon in their
APPS convergence analysis.

References

[1] J.E. Dennis, Jr. and V.J. Torczon. Direct search meth-
ods on parallel machines. SIAM Journal on Optimiza-
tion, 1:448–474, 1991.

[2] D. Bertsekas and J. Tsitsiklis. Parallel and Dis-
tributed Computation: Numerical Methods. New Jer-
sey, NJ, Prentice-Hall, 1989.

[3] A. Law and D. Kelton. Simulation Modeling and
Analysis. New York, NY, McGraw-Hill, 2000

[4] P.D. Hough, T.G. Kolda, V.J. Torczon. Asynchronous
parallel pattern search for nonlinear optimization.
SIAM Journal on Scientific Computing, 23:134–156,
2001.

[5] T.G. Kolda, V.J. Torczon. On the convergence of
asynchronous parallel pattern search. Submitted to
SIAM Journal on Optimization, December 2001.

[6] C. Davis. Theory of positive linear dependence. Amer-
ican Journal of Mathematics, 76:83–108, 1954.


