
A new Optimization Algorithm for the Design
of Integrated Circuits

Jernej Olenšek∗, Árpád Bűrmen∗, Janez Puhan∗, Tadej Tuma∗
∗University of Ljubljana/Faculty of Electrical Engineering, Ljubljana, Slovenia, e-mail: jernej.olensek@fe.uni-lj.si

Abstract— This paper presents a new hybrid algorithm for
global optimization of integrated circuits. The algorithm ex-
ploits the efficient search mechanism of differential evolution
and good global search capabilities of simulated annealing,
while avoiding their weaknesses. It is easy to implement
and has only a few parameters. The performance of the
algorithm is verified on seven real-world cases of integrated
circuit design with promising results. The proposed algo-
rithm was implemented in SPICE OPUS simulation and
optimization tool and compared with a multistart version
of the constrained simplex algorithm. It outperformed the
latter in terms of the final solution quality and speed.

Keywords— global optimization, differential evolution,
simulated annealing, design of integrated circuits

I. INTRODUCTION

Global optimization has received a lot of attention in
the recent years due to the fact that many real-world
problems can be treated as global optimization problems
of the following form:

min
x∈RN

f(x) (1)

f : RN → R
x ∈ S ⊂ RN

S =
{
x, x ∈ RN , l(i) ≤ x(i) ≤ u(i), i = 1, ...N

}
where f(x) is the so called cost function (CF), x is a
N -dimensional vector of optimization variables and l(i)
and u(i) are lower and upper bound for the i-th variable,
respectively.

Unfortunately problem (1) usually can not be solved
analytically. In most practical applications the CF is
highly nonlinear, has many local minima and contains
noise, especially when the value of the CF is the result
of numerical simulations or measurements. Many opti-
mization algorithms have been developed in the past.
Unfortunately they are very often designed to solve very
specific problems. Design of integrated circuits (IC) is an
area where the shape of the CF is unknown but all the
features that make an optimization process difficult are
present. An algorithm is needed that is able to find good
solutions in a reasonable amount of time with minimal
knowledge about the shape of the CF.

In this paper we present a new global optimization
method and apply it to IC design problems. It is a
hybrid between differential evolution (DE) and simulated
annealing (SA) algorithm. Both of these methods have

received a lot of attention in the recent years and were
successfully applied to many practical problems. SA and
DE also have their drawbacks. A combination of both
methods is expected to maintain good features of the
original methods while avoiding their weaknesses. The
method was tested on several real-world cases of IC
design with promising results.

This paper is organized as follows. In sections 2 and
3 the basic DE and SA algorithms are briefly described.
Section 4 gives a detailed description of the hybrid algo-
rithm. In section 5 the test cases are described. Section
6 presents experimental results obtained on several real-
world cases of IC design and section 7 contains the
concluding remarks.

II. DIFFERENTIAL EVOLUTION

Differential evolution (DE) is a parallel direct search
method that uses a population of points to search for
a global minimum of a function over continuous search
space [1]. For every point (target point) in the current
population it generates a so called mutated point by
adding a weighted difference of two randomly selected
points from the current population to the third point. Then
crossover between the current target and the mutated point
is applied to generate a trial point as in (2).

xm = xic1 + (xic2 − xic3) · w (2)
ic1 6= ic2 6= ic3 6= it

xg(i) =

xm(i) if α < P it

c or i == Ik

xit(i) otherwise
α = U

i = 1, 2, ...N

where xm is the mutated point, xic1, xic2, xic3 denote
three randomly selected points from the current popula-
tion, xit denotes the current target point, w is the weight
factor (usually w ∈ [0, 1]), and xg is the generated trial
point. U is an uniformly distributed random variable from
[0, 1], and Pc is the crossover probability. Ik is a randomly
chosen dimension and ensures, that the generated trial
point is not the same as one of the points in the current
population. The generated trial point is then evaluated.
If the cost function value at the trial point is lower than
that at the current target point, the trial point replaces
the current target point in the subsequent generation.
When this procedure is completed for every point in the

EUROCON 2007 The International Conference on “Computer as a Tool” Warsaw, September 9-12

1-4244-0813-X/07/$20.00 2007 IEEE. 674

current population, a new generation is started and the
whole process is repeated until the maximal number of
generations is reached.

III. SIMULATED ANNEALING

Simulated annealing (SA) is a stochastic global op-
timization algorithm that performs random sampling of
the search space [2]. Its main feature is the mechanism
controlling the transitions from the current point (x) to a
new point (y), which is generated by random perturbation
of the point x. The transition mechanism is known as
the Metropolis criterion and is defined by the following
expression:

P = min(1, e−
f(y)−f(x)

T) (3)

where P is the probability of making the transition from
x to y (i.e. y replaces x), f(y) and f(x) are the CF
values at x and y, respectively. Parameter T is also
referred to as the temperature. This mechanism always
performs downhill moves (i.e. if f(y) < f(x)), but it
also allows uphill transitions with positive probability.
This probability is controlled by the current value of the
temperature parameter. Initially T is set to a very high
value and most transitions (including uphill transitions)
are accepted. During the annealing process T is reduced
and the probability of making an uphill transition becomes
smaller. At the end of the optimization T has a very low
value and the algorithm behaves almost like a descent
method. This mechanism allows the algorithm to escape
from local minima and continue the search process in
other parts of the search space.

One of the attractive features of the SA algorithm
is the fact that its theoretical convergence to a global
minimum can be proved under certain assumptions. In
[3] for instance there are several convergence results for
various SA algorithms. SA algorithms that can guarantee
convergence usually do not perform well in practice due
to their slow convergence.

IV. HYBRID ALGORITHM

Both algorithms from the previous two sections have
their strengths but they also have some drawbacks. DE
was successfully applied to many problems and has
proved to be robust and fast due to its population of
points and efficient mechanism of trial point generation.
Due to the selection strategy (where only better solutions
get into the next generation) the population can get
trapped in a local minimum. SA on the other hand
has the ability to escape from local minima but takes
a long time to converge due to its inefficient random
sampling of the search space and slow cooling schedule.
In our hybrid algorithm we hope to combine the efficient
search mechanism of DE and the good global search
capabilities of SA. The method uses a population of
M samplers, and a combination of random sampling
and original DE operator. The method also uses the
original Metropolis criterion to allow uphill transitions.
Since the classic annealing schedule is one of the most

problematic aspects of SA, we use a different approach.
Instead of having a single sampler and decreasing
the temperature with time we have multiple samplers
operating at different constant temperatures. Temperature
changes are achieved by exchanging the points between
different samplers. There have already been several
attempts to use such an approach to avoid the difficulties
of selecting the appropriate cooling schedule [4], [5]. We
also include a random sampling mechanism to maintain
population diversity. For this purpose every sampler
has a fixed parameter called the range which is used in
the generation of random moves. Now the i-th sampler
gi (where i = 1, 2, ...M) can be fully defined by the
following features:

1 temperature T i, which is used in the Metropolis
criterion

2 range Ri, which is used for random step gener-
ation

3 crossover probability P i
c , which is used in DE

operator
4 a point xi in the search space S

Since different optimization parameters in IC design
can have values that differ by several orders of magnitude,
we also normalize all optimization variables to the [0,1]
interval. The pseudo code of the hybrid method is given
by Algorithm 1.

Algorithm 1
Require: M , TM , RM , P 1

c , PM
c and Dstop

1: Initialize population {generate M points}
2: Initialize method {set T,R, Pc}
3: k=0 {iteration counter}
4: repeat
5: k++
6: trial point generation
7: replacement {Metropolis criterion}
8: transition between samplers
9: until termination conditions are met

A detailed description of the method is given in the
following subsections. Superscripts are used to denote
different samplers (e.g. T i and xi denote the temperature
parameter and the current point in the search space of the
i-th sampler, respectively).

A. User Defined Input Parameters

The method uses some parameters that must be set
by the user. These are the number of samplers M ≥ 4
(population size), minimal temperature TM > 0 (tem-
perature for the last sampler), minimal range parameter
RM > 0 (range parameter for the last sampler), crossover
probabilities for the first and the last sampler P 1, PM ∈
[0, 1] and stopping distance Dstop > 0. Default values for
these parameters are M = 20, TM = 10−6, RM = 10−6,
P 1

c = 0.1, PM
c = 0.7 and Dstop = 10−3.

675

B. Initialization of Population

The initial population can be generated randomly but in
our method we use an approach that allows more thorough
sampling of the entire search space. Every optimization
variable interval is first divided into M equal subintervals.
Then M points are randomly generated so that every
subinterval for every optimization variable is included
only once in the initial population. This is very important
in algorithms that use crossover operators. The values of
parameters inside subintervals are chosen randomly.

C. Initialization of Method Parameters

At the beginning of the optimization run some addi-
tional method parameters must also be set. These pa-
rameters are the temperature, the range parameter and
crossover probability of every sampler. All of them are
initialized in the same way. We use the values of the
parameters for the first and the last sampler and an expo-
nential function to calculate the values for the remaining
samplers.

TM = Tmin = T 1 · e−ct·(M−1) (4)

ct = − 1
M − 1

· log(
TM

T 1
)

T i = T 1 · e−ct·(i−1), i = 1, 2, ...M

where T 1 is the maximum temperature and is set to
the CF difference between the worst and the best point
in the initial population. TM is a user defined minimal
temperature. The same procedure is then repeated for
the range parameter Ri with R1 = 1 and user defined
minimal range RM , and for the crossover probabilities
P i

c with user defined P 1
c and PM

c .

RM = Rmin = R1 · e−cr·(M−1) (5)

cr = − 1
M − 1

· log(
RM

R1
)

Ri = R1 · e−cr·(i−1), i = 1, 2, ...M

PM
c = P 1

c · ecp·(M−1) (6)

cp =
1

M − 1
· log(

PM
c

P 1
c

)

P i
c = P 1

c · ecp·(i−1), i = 1, 2, ...M

D. Trial Point Generation

In every iteration a single point is selected for improve-
ment. We select the worst point in the current population
but any point that is not the best point can be selected
here. We denote the sampler that holds this target point
with the superscript it. A new trial point is generated
using a combination of an operator similar to (2) and a
random move. The procedure is given by (7)

xm = xic1 + (xic2 − xic3) · w (7)
ic1 6= ic2 6= ic3 6= it

xg(i) =

xm(i) + r if α < P it
c

xit(i) + r otherwise
w = U · 2
α = U

r = Rit · tan(π · (U − 0.5))
i = 1, 2, ...N

where xm is the so-called mutated point, xic1, xic2 and
xic3 denote three randomly selected points from the
current population, and xg is the generated trial point. U is
an uniformly distributed random variable from [0, 1] and
r is the random step generated according to the Cauchy
probability distribution. If xg(i) violates box constraints it
is contracted towards xit(i) until the violation is resolved.

Since the range parameter R has different values for
different samplers, the mechanism acts almost as the
original DE operator when Rit is small and becomes
very much like random search operator when Rit is
large. Different samplers can be initialized with different
crossover probabilities (P i

c) by the user (via the input
parameters P 1 and PM) to fine tune the trial point
generation mechanism. Large values of P it

c mean that
along with the random step r a DE step is used for
many variables which speeds up the convergence while
low values of P it

c emphasize random search with only an
occasional DE step.

E. Replacement

In this phase of the algorithm the generated trial point
xg is submitted to the Metropolis criterion (3) with
temperature T it. If the Metropolis criterion is satisfied
xg replaces xit in the next generation. Better points are
always accepted. If the trial point xg is worse than the
current target point, the transition depends on the sampler
that holds the target point. If the target point xit is
located at the sampler with a high temperature (i.e. T it is
large), xg will have a high probability of being accepted.
However if the target point is located at low temperatures,
this probability will be low. With this mechanism the
chances for the algorithm to escape from a local minimum
are increased.

F. Transition Between Samplers

One of the main problems of the original SA algorithm
is the selection of the cooling schedule. If the cooling is
too fast the algorithm gets trapped in a local minimum
and if the cooling is too slow the optimization takes
too long to be of any use for practical purposes. In
our method the cooling schedule is not needed because
temperature changes are achieved by simply exchanging
points between samplers which operate at different but
fixed temperatures. After every trial point generation and
replacement phase we randomly select a sampler gis from
the population. Then samplers git and gis exchange their
points in search space with probability

676

P = min(1, e−(1
T is − 1

T it)·(f(xis)−f(xit))) (8)

This mechanism is quite different from the original idea
of SA. Here the idea is to always send better solutions
to samplers with higher T and R (i.e. if T is > T it and
f(xis) ≥ f(xit)) but also allow the occasional transition
of a better point to a sampler with lower T . If the point
xis is worse than xit the situation is reversed. At small
values of T the method works almost as a downhill
method accepting mostly points that reduce the CF value.
For small values of R the random component in trial
point generation is very small so the applied operator
is very much like the original DE operator. As long
as we are working with points at samplers with small
T and R the algorithm is very similar to DE. When
a good point is found the next point to be improved
is likely to be at samplers with higher T and R so
the algorithm runs at least for a while like a random
search allowing longer jumps through the search space
and making uphill transitions with higher probability. If
an acceptable solution is not found the point eventually
ends up at samplers with small T and R and the whole
process is repeated. This scheme also performs a kind of
reannealing and further improves the chances of escaping
from a local minimum.

G. Termination Criteria

Several termination criteria can be used in our method.
In practice the time available for the optimization is
always limited so the maximal number of function eval-
uations is a logical choice for termination. The maximal
distance between a point in the population and the current
best point is also used as a termination condition. When
this distance falls below a user defined stopping distance
Dstop the algorithm is terminated. The third termination
condition is the CF value difference between the best
and the worst point in the current population. When this
difference becomes smaller than the user defined minimal
temperature (Tmin = TM) the algorithm is terminated. In
IC design when the CF value reaches zero, all the design
goals are satisfied. This can also be used as a termination
condition.

V. OPTIMIZATION OF INTEGRATED CIRCUITS

In IC optimization the definition of the cost function
(CF) must account for all circuit properties for which
the design goals are chosen. Usually there are many
conflicting design goals. This makes the optimization very
difficult. In addition, the circuit is expected to satisfy
the design goals under different environmental conditions.
This is achieved by simulating the circuit over several
corner points. Every combination of environmental pa-
rameters (such as the temperature, the power supply volt-
age, manufacturing process variations, etc.) is represented
by a corner point. For every corner point simulations are
conducted resulting in real values that measure different
circuit properties. The worst values of circuit properties
are used to construct the penalty functions and the CF

value is obtained as a weighted summ of these penalty
functions [6]. Combining this process with a large number
of design variables (dimensionality of the problem) and
highly nonlinear characteristics of the elements in ICs
makes optimization extremely time consuming. A single
optimization run can often take several days or even
weeks to complete.

The optimization parameters (variables) in ICs are
usually CMOS transistor channel lengths, widths and
multiplication factors. Resistances, capacitances and
bias current values can also be included as optimization
variables. Often several transistor parameters are linked
by a mathematical expression (e.g. current mirrors,
differential amplifiers etc.), which is why the number
of transistors does not directly imply the number of
optimization variables.

The proposed method was used to optimize various
real-world ICs. We will describe in detail only the first
case (damp1) which is an amplifier circuit. The circuit
topology is given in Figure 1.

There are 27 optimization variables:
• 3 resistors → 3 optimization variables
• 2 capacitors → 2 optimization variables
• transistors NM0 and NM1 are identical → 2 opti-

mization variables (width and length)
• transistors NM3, NM5, NM7, and NM8 are identical
→ 2 optimization variables (width and length)

• transistors PM0 and PM1 are identical → 2 opti-
mization variables (width and length)

• transistors PM2, PM3, PM5, and PM10 are identical
→ 2 optimization variables (width and length)

• transistors PM9 and PM11 are identical → 2 opti-
mization variables (width and length)

• transistors NM2, NM4, NM6, PM4, PM6, and PM7
→ 6 · 2 = 12 optimization variables (widths and
lengths)

In this case we do not optimize multiplication factors
of the transistors.

The properties which we are interested in (design goals)
and their desired values are:

• circuit area (< 10−8m2)

Fig. 1. Topology for the damp1 case

677

• current consumption (< 1mA)
• AC gain (> 70dB)
• unity gain bandwidth (> 5MHz)
• bandwidth (> 500Hz)
• phase margin (> 60o)
• gain margin (> 10o)
• maximal derivative of gain magnitude (< 0)
• output voltage swing (> 1.6V)
• DC gain (> 60dB)
• settling time (< 300ns)
• overshoot (< 1%)
• slew rate (> 5 · 106V/s)
• rise time (< 200ns)
• fall time (< 200ns)

In order to measure these properties we need to perform
the following analyses:

• operating point analysis
• DC analysis
• AC analysis
• transient analysis

In this first case we only consider a single corner point
with typical model parameters and ambient temperature
of 27 degrees centigrade.

The remaining cases will only be briefly described.
The second case (damp1-5c) optimizes the same circuit
as the first case, with the same optimization parameters
and design goals but considers five different corner points
to account for varying environmental conditions (model
parameters, temperature, circuit load, supply voltage, etc.)

The third case (lfbuffer) is a buffer circuit with 36
optimization parameters (32 transistors, 1 capacitor and 1
resistor). It requires an OP, an AC, a DC and a transient
analysis to measure 13 circuit properties chosen as design
goals. The case only considers a single corner point.

The fourth case (lfbuffer-5c) is the same as the third
one but considers five different corner points.

The next case (nand) is a simple NAND gate element
with only 3 optimization parameters (4 transistors) and
considers 3 corners. The case requires an OP analysis and
two transient analyses to measure 9 circuit properties.

The delay case (delay) has 12 optimization parameters
(6 transistors) and a single corner point. It requires an OP
analysis and a transient analysis to obtain 6 considered
design properties.

The last case (damp2) is another amplifier circuit with
15 optimization parameters (9 transistors, 1 capacitor and
1 resistor) and 14 corner points. We perform an OP, a
DC, two AC, a transient, and a noise analysis to measure
13 circuit properties.

The summary of the main characteristics such as
dimensionality, the number of design goals and the
number of corner points for these problems is given in
Table I. The maximal number of CF evaluations is also
given.

TABLE I
TEST CASES SUMMARY

Case design design corner maximal CF
variables goals points evaluations

damp1 27 15 1 500 000
damp1-5c 27 15 5 500 000
lfbuffer 36 13 1 500 000

lfbuffer-5c 36 13 5 500 000
nand 3 9 3 10 000
delay 12 6 1 500 000

damp2 15 13 14 500 000

All cases were optimized using the default values
for the algorithm parameters as described in section
IV/A. The method was implemented in the SPICE OPUS
simulation and optimization tool [7]. It was compared
with a version of the constrained simplex (COMPLEX)
algorithm that is already a part of SPICE OPUS. The
method uses a multi start concept to give the original local
method some global search capabilities. Every time the
original COMPLEX method [8] reaches its termination
criteria (i.e. simplex size or maximal number of function
evaluations), a special mechanism is applied to initialize
a new simplex in the unexplored parts of the search
space. Then the COMPLEX algorithm is restarted to
find a new and hopefully better local minimum [9]. The
process is repeated until the maximal number of CF
evaluations is reached. This concept has proved to be
fairly successful in IC design. It is however often slow
and unreliable. The proposed method was compared with
the multistart COMPLEX algorithm in terms of the final
solution quality and the number of CF evaluations (CFE)
needed to reach the solution. Since the optimization is
extremely time consuming, every circuit was optimized
only once.

VI. RESULTS

Optimization results are given in Table II. Circuits
for which the final CF value is zero have satisfied all
the design goals (global minimum was found) and the
optimization was stopped at that time even though the
convergence has not occurred yet. For the multistart
COMPLEX method the number of restarts needed to
reach a particular solution is given in parentheses.

It can be seen from the table that the proposed method
outperforms the multistart COMPLEX method on all
considered cases in terms of the final solution quality
(minimal CF). Since the multistart COMPLEX method
is designed to run without limitations on the number of
CFE, the method was manually stopped once the maximal
number of CFE was reached. For the proposed hybrid
method the convergence can occur earlier, depending on
the stopping criteria described in section IV/G.

For the first case (damp1) the multistart COMPLEX
method needed 347 457 CFE (80 restarts) to find its final
solution and was unable to improve that solution in all
subsequent 38 restarts. Even with so many restarts and
CFE the complex method was not able to find the solution
that would satisfy all the design goals. The proposed

678

TABLE II
EXPERIMENTAL RESULTS

Case proposed multistart
method COMPLEX

damp1 CFE for CF < 1 4 715 5 208 (2)
CFE for CF < 0.5 4 834 22 699 (6)

final CF 0 0.087
CFE for minimal CF 30 965 347 457 (80)

final CFE 30 965 500 001 (118)
damp1-5c CFE for CF < 10 1 174 1 356 (1)

CFE for CF < 5 8 333 21 281 (5)
final CF 1.776 3.425

CFE for minimal CF 497 810 231 312 (55)
final CFE 500 001 500 001 (122)

lfbuffer CFE for CF < 10 1 942 414 (1)
CFE for CF < 1 12 595 1 339 (1)

final CF 0 0.512
CFE for minimal CF 47 744 3 310 (1)

final CFE 47 744 500 001 (116)
lfbuffer-5c CFE for CF < 10 1941 989 (1)

CFE for CF < 5 5 852 13 523 (4)
final CF 2.222 4.099

CFE for minimal CF 430 390 394 776 (104)
final CFE 500 001 500 001 (133)

nand CFE for CF < 500 142 40 (1)
CFE for CF < 200 370 94 (1)

final CF 166.654 166.686
CFE for minimal CF 1 185 5 818 (47)

final CFE 1 279 10 001 (81)
delay CFE for CF < 20 · 103 71 832 21 101 (28)

CFE for CF < 5 · 103 89 019 425 548 (542)
final CF 0 2122.000

CFE for minimal CF 111 650 491 806 (629)
final CFE 111 650 500 001 (640)

damp2 CFE for CF < 20 1 640 420 (1)
CFE for CF < 10 13 806 3 926 (3)

final CF 5.930 7.487
CFE for minimal CF 270 060 326 011 (231)

final CFE 395 606 500 001 (352)

hybrid method was able to satisfy the goals with less than
ten percent of the maximal number of CFE.

In the second case (damp1-5c) neither method was able
to satisfy all the design goals. Multiple considered corner
points mean that a more robust circuit is required which
may not be possible to obtain with the given topology
or parameter bounds. The problem with several corners
is much more complex which means that more CFE are
required to find good solutions. Although the design goals
were not completely satisfied, the proposed method was
still able to find a considerably better solution than the
multistart COMPLEX method. In this case both methods
were run until the maximal number of CFE was reached.

In the third case (lfbuffer) the multistart COMPLEX
converged very quickly and found a relatively good solu-
tion in the first run. But in all the remaining 115 restarts
the method was unable to improve that solution. The
proposed method was again able to find a global minimum
with less than ten percent of the maximal number of CFE.

In the fourth case (lfbuffer-5c) both methods failed to
satisfy all the design goals within the given number of
CFE. Despite numerous restarts the multistart COMPLEX
method was unable to find a better solution than the
proposed method.

The next case (nand) was the smallest among all
the considered cases. Again neither method was able to
find a solution that would satisfy all the design goals.
The multistart COMPLEX method converged quickly but
found only local minima. It took 47 restarts to find the

final solution. The proposed method required a little more
than ten percent of the maximal number of CFE and was
able to find a slightly better solution than the multistart
COMPLEX method.

The initial progress for the delay case is much faster
with the multistart COMPLEX method than with the pro-
posed hybrid method. The multistart COMPLEX method
was able to complete many restarts before the proposed
method got even close to the solutions with low CF value.
But slow initial progress implies that the proposed method
searches more thoroughly through the search space which
improves its chances of finding the global minimum.
The method required about twenty percent of the total
CFE to satisfy all the design goals, while the multistart
COMPLEX method was not able to find a solution with
CF = 0 even after the maximal number of CFE (81
restarts).

The last case (damp2) is more complex due to a large
number of corner points. Both methods failed to satisfy
all the design goals. The multistart COMPLEX method
again exhibits fast initial progress but despite 352 restarts
it is unable to find a better solution than the proposed
method. The proposed method required about 80 percent
of the maximal CFE to converge.

We will discuss the optimization results in detail for
the first case only (damp1). Table III shows the measured
properties at the final solution for both methods. One can
see that both methods were able to satisfy most of the
goals. Multistart COMPLEX method found the solution
where some of the properties are even better than those
found by the proposed method. This however comes at a
price of not satisfying the output swing requirement. The
proposed method on the other hand was able to satisfy
all the design goals with a considerably lower number of
CFE.

To demonstrate the difficulties of IC optimization we
also calculated the profile of the CF at the final solution

TABLE III
RESULTS FOR DAMP1 CASE

Measurement goal proposed multistart
method COMPLEX

circuit area [m2] < 10−8 7.33 · 10−9 5.95 · 10−9

current
consumption [A] < 10−3 409 · 10−6 530 · 10−6

AC gain [dB] > 70 70.2 70
unity gain

bandwidth [MHz] > 5 15.9 15.7

bandwidth [Hz] > 500 1.11 · 103 2.23 · 103

phase margin [o] > 60 73.3 90.3
gain margin[o] > 10 71.5 15.6
max.derivative

of gain
magnitude < 0 −161 · 10−9 −39.9 · 10−9

output voltage
swing [V] > 1.6 1.61 1.57

DC gain [dB] > 60 69.9 66.7
settling time [ns] < 300 193 168

overshoot [%] < 1 1.29 · 10−3 885 · 10−3

slew rate [V/s] > 5 · 106 6.36 · 106 7.48 · 106

rise time [ns] < 200 75.2 64.1
fall time [ns] < 200 66.2 81.1

679

Fig. 2. Cost profile at the final solution of case damp1 found by the
proposed hybrid method. Every curve represents a sweep of one of the
optimization parameters.

found by the proposed hybrid method. Figure 2 shows the
CF profile when sweeping through all parameters. The
resulting curves intersect at the point with x axis value
zero representing the final parameter values. The value
of the CF remains zero or increases when the parameters
are varied, which confirms the final solution quality. The
figure shows that the sensitivity of the CF to different
parameters varies considerably. One can also see noise
and several local minima in the CF. All these facts make
fast gradient descent methods inefficient and the entire
optimization task extremely difficult. And when there are
several corner points to consider, the task becomes even
more challenging.

VII. CONCLUSIONS

A new hybrid algorithm for numerical optimization
of integrated circuits was presented. Experiments were
conducted on seven real-world cases of IC design to
evaluate the performance of the method. The method was
implemented in the SPICE OPUS simulation and opti-
mization tool and comparison was made with a version
of the simplex algorithm (multistart COMPLEX) which
is already integrated as a part of SPICE OPUS. Exper-
imental results have confirmed that the proposed hybrid
method outperforms the multistart COMPLEX method in
terms of global search capabilities. Since the proposed
method is global in nature it requires a large number
of function evaluations but practical experiments have
shown that large computational burden is outweighed by
the final solution quality. The proposed method is easy
to implement and has only a few parameters. It would be

useful to upgrade the method with a local search method
to improve the convergence speed in the final stages of the
optimization. Further testing is also required to confirm
the efficiency of the method on more general problems.

ACKNOWLEDGMENT

The research has been supported by the Ministry of
Higher Education, Science and Technology of the Repub-
lic of Slovenia within programme P2-0246 - Algorithms
and optimization methods in telecommunications.

REFERENCES

[1] R. Storn and K. Price, “Differential evolution - a simple and efficient
heuristic for global optimization over continuous spaces,” Journal
of global optimizazation, vol. 11, pp. 341–359, 1997.

[2] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, pp. 1277–1292, 1983.

[3] R. L. Yang, “Convergence of the simulated annealing algorithm for
continuous global optimization,” Journal of optimization theory and
applications, vol. 104, no. 3, pp. 691–716, 2000.

[4] G. L. Bilbro, “Fast stochastic global optimization,” IEEE Trans.
Syst., Man, Cybern, vol. 24, no. 4, pp. 684–689, 1994.

[5] D. R. Thompson and G. L. Bilbro, “Sample-sort simulated anneal-
ing,” IEEE Trans. Syst., Man, Cybern (B), vol. 35, no. 3, pp. 625–
632, 2005.

[6] A. Bűrmen, D. Strle, F. Bratkovič, J. Puhan, I. Fajfar, and T. Tuma,
“Automated robust design and optimization of integrated circuits
by means of penalty functions,” AEU-International journal of
electronics and communication, vol. 57, no. 1, pp. 47–56, 2003.

[7] (2005) Spice opus circuit simulator homepage. [Online]. Available:
http://www.fe.uni-lj.si/spice/

[8] M. J. Box, “A new method of constrained optimization and a
comparison with other methods,” Computer Journal, vol. 8, pp. 42–
52, 1965.

[9] J. Puhan, A. Bűrmen, and T. Tuma, “Analogue integrated circuit siz-
ing with several optimization runs using heuristics for setting initial
points,” Canadian journal of electrical and computer engineering,
vol. 28, no. 3-4, pp. 105–111, 2003.

680

