
Session 11b4

0-7803-5643-8/99/$10.00 © 1999 IEEE November 10 - 13, 1999 San Juan, Puerto Rico
29th ASEE/IEEE Frontiers in Education Conference

11b4-16

The Principle of Vaccination in Teaching

Tadej Tuma, Iztok Fajfar, Janez Puhan
University of Ljubljana, Faculty of Electrical Engineering

1000 Ljubljana, Tr�aška 25, Slovenia
E-mail: tadej.tuma@fe.uni-lj.si

Abstract – This paper describes a very natural teaching
mechanism that we have incorporated in our higher
education curriculum. Any parent knows that some children
are very difficult to persuade not to touch hot objects. The
more you warn them the more your offspring is attracted by
the burning candle. The thing to do is, let the child touch the
flame and it will avoid all hot objects henceforth. The trick is
to control the experience in order to keep the damage as
small as possible. We have observed the same stubborn
attitude of students toward certain subjects. In our
experience good programming style is one of those things
that need to be learned the hard way. We therefore let the
students first experience bad programming and then make
them start over, this time employing a proper approach. Our
concept has not only been successful regarding the improved
programming manners, but has also considerably increased
the popularity of the laboratory.

Introduction

There are things in life that you have to learn by experience.
No matter how smart you are, there is just no way around
making certain painful mistakes before you can understand.
For instance, one has to suffer at least one serious data loss
due to unsaved work in order to learn the simple routine of
regularly pressing a save button. Preaching theory,
discussing, simulating, or warning is all of little use. The
best way is to just let it happen and keep the damage as
small as possible. After a “patient” has actually lost two
hours of typing he/she is cured for the rest of his/her live.
This is exactly the way vaccination works: a dose of a virus
is deliberately injected: small enough not to cause serious
damage but large enough to provide a lifelong resistance.

Well, not every disease can be prevented by
vaccination, but bad programming technique is certainly one
of them. Throughout many courses we constantly preach
about the importance of a systematic (procedural, modular,
or object) and orderly approach [1]. The students are asked
to document every line of their source code. They have to
write detailed reports as their work proceeds. And, of course,
they do their homework, they learn and understand all the
arguments in favor of good programming techniques. Many
decades of educational experience, however, teach us that a
majority of graduate students will abandon any planning and
documenting as soon as direct supervision of their
programming techniques disappears. The academic line of
arguing obviously isn't convincing enough [2]. They tend to

memorize the theory and obey the instructions in their
practical work, without grasping the need for a systematical
approach to programming.

In 1993 we have redesigned the laboratory for control
software development, in order to let the students experience
bad programming. By not insisting on proper techniques we
deliberately let the students work disorganized until they
start getting desperate. Then we help them with some very
effective tips. As simple as the idea may seem, there are
quite a few practical problems:

1. The students must not be aware of being first misled and
then corrected. On the other hand, it is not fair to push
them in the wrong direction.

2. The laboratory assignments must be especially selected
to emphasize the difference between good and bad
programming techniques.

3. The assignments must also be highly motivating,
otherwise the students will not wade through the crisis.

4. Inevitably, there is a considerable loss of time since the
average student needs from two to three weeks to
produce a sufficiently messy code.

In the following we explain in detail how we have dealt
with those problems and present the feedback we have
received from the students over the past six years.

The Hardware

In order to concentrate on software development we have
designed our target hardware as simple as possible. We use
two types of training boards, both based on a M6803
microcontroller with 8Kbytes of external RAM and 8Kbytes
of EPROM. The boards differ only in their I/O devices as
can be seen in Figures 1 and 2.

Both system types include an onboard download utility
as well as a simple onboard debugger residing in the system
EPROM and the M6803's internal RAM. This software
replaces the usual EPROM and processor emulators, thus
simplifying the students’ initial preparations and cutting
down laboratory costs.

The development system is thereby reduced to a
standard PC running an M6803 cross assembler. Actually
the shaded units in Figures 1 and 2 are also part of the
development system in spite of the fact that they reside on
the target system.

Session 11b4

0-7803-5643-8/99/$10.00 © 1999 IEEE November 10 - 13, 1999 San Juan, Puerto Rico
29th ASEE/IEEE Frontiers in Education Conference

11b4-17

Figure 1. The basic target system

Figure 2. The advanced target system

A typical laboratory session starts with the assembly
language coding on a PC [3]. The cross assembler is then
used to produce a standard Motorola S-code file, which is
simply copied to the PCs serial communications port. On the
other end the download utility converts the S-code to
machine code and places the latter into the user EPROM,
which is in fact a write locked RAM. At this moment a

standard terminal emulator is run on the PC to communicate
with the onboard debugger. The program is then traced in a
single-step mode with only a few basic commands. The
onboard single stepping enables the students to monitor
everything that is happening inside the registers and memory
locations. At the same time all I/O devices can be observed,
working in a “slow motion” mode.

The Projects

At the beginning of the laboratory, every student is working
on his own PC with an attached target system. The first task
is to get familiar with the development system. For this
purpose everybody is asked to write a simple keyboard
driver for the target system. At this stage the students are
still guided by the teaching assistants. Many potential real-
time problems like the bouncing of mechanical contacts are
being brought to their attention. The students are led rather
strictly to a uniform and optimal solution for the keyboard
driver.

In the next phase the conception of a small real-time
operating system is handed out and discussed. Some core
routines like a simple task scheduler are already included in
assembler source code while others are just described from
the caller's point of view. The keyboard driver, which has
just been developed collectively, is of course part of this
mini operating system.

At that point the laboratory curriculum changes
dramatically. The students are grouped into teams of three to
five and each team is assigned a practical project. Although
the operating system conception is being recommended it is
made clear that the project functionality is all that matters.
After an initial briefing the teaching assistants start behaving
as consultants - the teams have to make their own decisions.

The relatively short leash in the beginning makes the
students impatient. The following sudden freedom of
choosing their teammates as well as the project, also
suggests a more “relaxed” way of programming, which is
exactly what we intend, only misleading, not pushing the
wrong way.

Let us now take a closer look at the assigned projects.
All projects are complete applications well known to every
lay person and not just parts of some sophisticated
application [4]. We all know what a remote control, a credit
card reader, a railway crossing, a code lock or an elevator
do. It took us quite some time to design small toy-like
models for each application. These models are connected
directly to the digital and analog interfaces of our target
systems. By successfully completing their projects, the
students can actually read the code from their fathers credit
card, they can analyze the pulses of an infra-red car key, see
the movable arm of the mini railway crossing go up while
lights are flashing and so forth. Although this may seem a
little childish, it is most important for the students'
motivation! Beside that, the innocent looking toy-like

RT68-01
6803

SCI PIA

timer RAM

CPU 6800

8Kb system
EPROM

8Kb user
RAM

8Kb user
EPROM

Piezo
beeper

Stepping
motor

Keypad
(4x6 keys)

7 segment
display

RT68-02
6803

SCI PIA

timer RAM

CPU 6800

8Kb system
EPROM

8Kb user
RAM

8Kb user
EPROM

8 channel
selector

7 segment
display

8 channel
selector

…

Pin-board

PIA 6821

Session 11b4

0-7803-5643-8/99/$10.00 © 1999 IEEE November 10 - 13, 1999 San Juan, Puerto Rico
29th ASEE/IEEE Frontiers in Education Conference

11b4-18

models make the students initially underestimate the control
problems.

Once on their own, many teams will start off by
thinking: “Who needs this systematic approach stuff to
control a few lights?” Sooner or later, however, they
discover that controlling an innocent looking toy-robot
requires the exactly same approach as does controlling a
professional one. On their way to this discovery the teams
will not only drown themselves in messy programs but will
also encounter communication problems. Sometimes they
will even start quarreling about who messed up what. It is
very important to reach this frantic state as fast as possible
without forcing it upon the students, because this procedure
is actually wasting precious time.

This is the point where an intervention becomes
necessary since all our projects are almost impossible to
complete without a sound software engineering technique.
The teams are encouraged to start over, this time following
the code of good programming. The unpleasant experience
they have just had now makes them treasure the operating
system conception which has been put forward to them in
the beginning.

Of course some students are clever enough to use a
systematic approach from the beginning, others are just
obedient enough. Still others have been warned by senior
students, which is just as well. The ones who need the hard
lesson most will receive it.

As soon as a project is completed each member of the
team is asked to write a detailed report on his work. The
students are then assessed individually according to three
criteria. The most important criterion is the student's
programming proficiency, but also his behavior in the team
as well as the quality of his written report are considered.
The most outstanding reports are continuously published on
our Web site at http://fides.fe.uni-lj.si/tuma/mpeoms.html. In
spite of being written in Slovenian language, these reports
are very illustrative, showing great enthusiasm. By
publishing superior projects we award the best teams. At the
same time, the accumulating reports are a very good study
material for future student generations.

The time scale in Figure 3 summarizes the laboratory
schedule. After the introductory two weeks, it takes the
students two weeks to become familiar with the concept of
time slicing and another three weeks to build a keyboard
drive. The teamwork on individual projects is scheduled for
the next seven weeks. The average team loses approximately
two weeks by trying to hack itself through the project,
though this time is not entirely wasted.

The time needed to complete the project depends on the
team. Some teams take only four weeks; others have no yet
completed their project by the end of the semester. The
average group however needs six weeks and has two weeks
to spare. The writing of reports is not bound to the semester
and is considered individual homework. Since there is no
written examination the report writing may continue after
the semester terminates.

Figure 3. The laboratory schedule. One semester=15 weeks

A Typical Lab Session

Let us observe a team of three students (Jack, Susan and
Paul) who have to design the controlling software for a
pedestrian crossing. The model consists of two traffic light
posts, one for the pedestrians with two LEDs and one for the
cars with three LEDs. There is also a beeper for blind
persons and a button for pedestrians to request crossing. The
model is connected to the parallel interface occupying six
outputs and one input. The target system RS232 line is used
to simulate the communication between the pedestrian
crossing and a central computer.

The project is divided among the three students as
follows: Jack is responsible for the serial communications
with the PC, Paul takes care of the light sequence, while
Susan is attending to the pedestrian button and the beeper.

The project would be fairly simple were it not for the
audio signal. Managing the light sequence is straightforward
since it can be programmed with simple delay loops. While
the light sequence is running the pedestrian button might be
scanned during the delay loops although this approach is
already extremely messy. The communication via RS232
can wait until the sequence has finished. It is impossible
however to stretch the “common-sense-approach” beyond

Introduction to the
assembly language.

Introduction to the
operating system.

Getting started. A
keyboard driver is
designed and tested
collectively.

1st week

2nd week

3rd week

4th week

5th week

6th week

7th week

8th week

9th week

10th week

11th week

12th week

13th week

14th week

15th week

Team work on projects,
approx. 2 weeks are due
to misprogramming. In
the worst case only 3
weeks are left for the
project.

Writing reports. This
may exceed the
semester, since there is
no written exam.

Session 11b4

0-7803-5643-8/99/$10.00 © 1999 IEEE November 10 - 13, 1999 San Juan, Puerto Rico
29th ASEE/IEEE Frontiers in Education Conference

11b4-19

this point. The crucial problem is the beeper, which has to be
pulse driven simultaneously. The students usually fail to
recognize this complication and start naively by designing
and testing independent subroutines. Paul might even
anticipate problems with the coexistence of his light
sequence and Susan’s audio signal but he will probably
dismiss his doubts until later. He is inclined to think, “If
everything else works fine, we'll somehow add Susan’s
audio driver”. Once a team actually tried to solve this
particular problem by squeezing the beeper pulses in-
between the light sequence.

Whichever approach our three students choose initially
will eventually lead them to the only sound solution - the
time slicing technique of a scheduler. If they have gone the
wrong way, they will have to start over. The proposed
approach is not only well structured and systematic, but also
extremely simple to understand provided, of course, the
three are open-minded enough to look at things in a different
manner.

The proposed scheduler has been derived from
professional real time operating systems introducing four
simplifications.

1. There is only one interrupt allowed in the system,
namely the scheduler’s.

2. All time slices are of exactly the same size of 1200
machine cycles.

3. Each task must terminate before its time slice expires.
4. The cyclic task schedule is composed of exactly 16

entries.

The four radical simplifications render an extremely
simple scheduler [5], which will fit together with its task
schedule into the few lines shown in Figure 4.

We have included the assembler code in this paper only
to visualize how very little it takes to cross over from the
“world of hacking” to a sound programming approach. In
order to magnify the contrast between good and bad
programming techniques, we have artificially brought the
two concepts absurdly close together. In real life it takes
much more than just a few simple lines to make a hopelessly
messy piece of software work. Besides, there are usually
many way in-between the “good” and the “bad” approach.
But this is exactly what a vaccination is all about! Inflict an
unrealistically small infection with an easy recovery and
create a lifelong memory of it!

So – our three students only need to include the above
18 lines of assembler code and set up the scheduler data
structure according to their needs. Since they have heard all
the basic theory of multitasking in earlier courses they
certainly are capable of understanding this extremely simple
scheduler just by studying the commented source code in
Figure 4.

After discussing the proposed scheduler the three
students have configured the task schedule in Figure 4 for
their particular pedestrian crossing. We can see Paul's light

controlling task LIGHT running concurrently with Susan’s
beeper driver AUDIO, both with a 1/64s-duty cycle. Susan
has even decided to grant the pedestrian button its own
concurrent scanning routine BUTTON. There are also two
high-speed tasks in the system; namely Jack's serial
communications task SCI and an independent real-time
clock task TIM. The latter tasks are each occupying four
positions in the scheduler data structure, thus running with a
1/256s-duty cycle.

Figure 4. The schedule data structure and code

By following this scheme the students were able to split
their problems into five independent tasks, all running quasi
concurrently. It was actually impossible for them to divide
the problem between themselves until they have reached this
level of planning, which is why we insist on teamwork.

As soon as the students have grasped the advantages of
this simple but effective scheduler, the only tricky obstacle
left is the communication between individual tasks. Our
three students have to deal with some classic arbitration and
synchronization problems.

;---------------TASK SCHEDULE----------------
SCHTAB FDB SCI ;Jack's serial comm.

FDB TIM ;Real time clock
FDB SCHRTS ;Void task
FDB SCHRTS ;Void task
FDB SCI ;Jack's serial comm.
FDB TIM ;Real time clock
FDB LIGHT ;Paul's light sequence
FDB AUDIO ;Susan’s audio sequence
FDB SCI ;Jack's serial comm.
FDB TIM ;Real time clock
FDB SCHRTS ;Void task
FDB BUTTON ;Susan’s button scan
FDB SCI ;Jack's serial comm.
FDB TIM ;Real time clock
FDB SCHRTS ;Void task
FDB SCHRTS ;Void task

SCHRTS rts

;-----THE SCHEDULER INTERRUPT ROUTINE---------
;12 cycles between interrupt and _OCF

_OCF ldaa SCHTST ;4 Get test byte
beq SCHOK ;3 Branch if prev. ok

SCHERR bra SCHERR ; fatal error otherwise
SCHOK inc SCHTST ;6 Set test byte

ldaa _TCSR ;3 Clear TOF
ldd _OCR ;4 Load OCR
addd #1200 ;4 incr. by time slice
std _OCR ;4 and restore to OCR
ldx SCHPTR ;5 Get ptr to current
ldx 0,X ;5 Get task entry addr.
cli ;2 Allow interrupts
jsr 0,X ;6 EXECUTE THE TASK
ldaa SCHPTR+1;4 Get high of SCHPTR,
adda #2 ;2 increment it,
anda #%00011110; 2 overlay 0's
staa SCHPTR+1;4 and restore SCHPTR
clr SCHTST ;6 Reset test byte
rti ;10 Return from OCF

Session 11b4

0-7803-5643-8/99/$10.00 © 1999 IEEE November 10 - 13, 1999 San Juan, Puerto Rico
29th ASEE/IEEE Frontiers in Education Conference

11b4-20

The Feedback

When we fist started the new laboratory curriculum, we
were uncertain about its success, so we set out to monitor its
progress very closely. Among other evaluation methods we
started to collect some feedback with a short but well
prepared anonymous questionnaire. After the course we
wanted to know how they felt about four things on a scale
from 1 to 5.

1. How much of a burden was our new approach to the
students? We were afraid they might feel overworked
when things started to go wrong.

2. How much relevance could they see in this kind of
work? This is actually testing for the motivation.

3. How much stress did they feel during the course? It was
our ambition to create a pleasant working atmosphere.

4. How much of a novelty is this laboratory compared to
the experiences they have had so far?

The average answers to the above questions from the
five past generations can be seen in Figure 5. Our approach
was successful right from the start and we have steadily
improved the course, as can be seen from the tendencies.
The results from the ’98 generation are a bit different, since
the course has been moved from third to second grade.

Generation: ’94 ’95 ’96 ’97 ’98
Population: 56 42 14 28 18
“How exhausting?” 3.45 3.40 3.07 3.07 3.61
“How relevant?” 4.16 4.10 4.43 4.68 4.67
“How pleasant?” 3.70 3.79 4.36 4.36 4.28
“How inventive?” 3.68 3.95 4.43 4.57 4.06

Figure 5. The results of the questionnaire on a 1 to 5 scale

Since we continuously publish the questionnaire
answers on the Web we have included another very
interesting question: “Some younger colleague of yours
wants your opinion on the course he is about to take. What
would be your advice to him?” So every new generation can
get a collection of uncensored “insider tips and tricks” right
from the Web. It is also very amusing to read, how the
students blame themselves for having to start over with their
projects! Our misleading is so subtle that no student has ever
complained for being deceived.

Conclusions

We have introduced an unusual alternative to laboratory
work in 4th year of the electrical engineering curriculum. Of
course we realize that most important for any laboratory
concept is its pedagogical efficiency, which can be seen
from the students feedback.

So far five student generations have passed our new
laboratory. The students programming skills have definitely
improved in this period. Though - in our opinion - this is not
the most important achievement. Amazingly, the laboratory
has become extremely popular. In an anonymous
questionnaire every third student claims to have learned
more about programming than in all previous courses
together. This means of course they have gained deeper
understanding of previously learned methods.

Another feedback is the number of students who choose
microcontroller software as their graduating thesis subject.
This number is currently three times larger than before we
introduced our “experience-bad-programming” laboratory.
Several graduating students are currently designing new and
interesting model applications, which will be used as
laboratory assignments of future generations.

Each year some students decide to build their own target
systems to work with after having passed the examination.
Our integrated debugger actually makes an expensive
development system superfluous, which is very important
for inquisitive students who want to do some amateur
controlling at home.

As a matter of fact, the enthusiastic feedback from our
students has inspired us to write this article in the first place.

References

[1] T. F. Leibfried, R. B. MacDonald, “Where is Software
Engineering in the Technical Spectrum?”, Int. J. Engng
Ed., Vol. 8, No. 6. pp. 419-426, 1992.

[2] D. M. Auslander, C. H. Tham, Real-time Software for
Control: Program Examples in C, Prentice Hall,
Englewood Cliffs, NJ 1990.

[3] M. C. Loui, “The Case for Assembly Language
Programming”, IEEE Transactions on Education, Vol.
31, No. 3, 1988.

[4] P. I. Lin, “Microcomputer Hardware/Software
Education in Electrical Engineering Technology: A
Practical Approach”, Proceedings ASEE-91, pp. 791-
794, New Orleans, LA, 1991.

[5] T. Tuma, F. Bratkovi�, I. Fajfar, J. Puhan, “A
Microcontroller Laboratory for Electrical Engineering”,
Int. J. Engng Ed, Vol. 14, No. 4, pp. 289-293, 1998.

