
REAL-TIME
OPERATING
SYSTEMS:
LABORATORY EXERCISES

Založba
FE JANEZ PUHAN

University of Ljubljana
Faculty of electrical engineering

Real-time operating systems:
Laboratory exercises

Janez Puhan

Ljubljana, 2019

Kataložni zapis o publikaciji (CIP) pripravili v Narodni in univerzitetni knjižnici v Ljubljani

COBISS.SI-ID=299480576

ISBN 978-961-243-381-9 (pdf)

Založnik: Založba FE, Ljubljana
Izdajatelj: Fakuleta za elektrotehniko, Ljubljana
Urednik: prof. dr. Sašo Tomažič
1. elektronska izdaja

URL: http://fides.fe.uni-lj.si/~janezp/real-time_operating_systems_laboratory_exercises.pdf

Contents

Preface v

1 Installing IDE 1

2 Tasks and scheduling algorithms in FreeRTOS™ 13

3 Implementing other scheduling algorithms 21

4 Assembly language function 29

5 MPU 35

6 Stack management in FreeRTOS™ 47

7 Heap management in FreeRTOS™ 53

8 Deadlocks 61

9 Ramp application 75

A Peripheral device initialization and usage receipts 79

B External board LCD 85

Bibliography 87

Preface

The laboratory exercises described in this script are part of the Real-time oper-
ating systems course. The course is held in the third semester of the 2nd Cycle
Postgraduate Study Programme in Electrical Engineering, study programme op-
tion Electronics, at the Faculty of electrical engineering of the University of Ljubl-
jana, Slovenia. The students are introduced into RTOS1 concepts through nine
laboratory exercises. A µC2 system with ARM3 Cortex based processor core is
used. The Arduino Due board with Olimex ARM-USB-OCD-H5 JTAG6 interface
serves as a hardware platform. The open source FreeRTOS™ software is used as
an operating system platform. The Eclipse IDE7 for C/C++ Developers is used
as a graphical interface to the GNU8 tools (i.e., compiler, linker, debugger, etc.).
The environment is installed on a PC9 with installed Linux operating system. A
solid knowledge of the C programming language is a required prerequisite.

1RTOS ... Real-Time Operating System
2µC ... Micro-Controller
3ARM ... Advanced RISC4 Machines
4RISC ... Reduced Instruction Set Computer
5ARM-USB-OCD-H... ARM - USB6 - On-Chip Debugger - High speed
6USB... Universal Serial Bus
7JTAG ... Joint Test Action Group
8IDE ... Integrated Development Environment
9GNU ... GNU’s Not Unix

10PC ... Personal computer
FreeRTOS is a trademark of Real Time Engineers Ltd.

Exercise 1

Installing IDE

Prepare a working environment to program the Arduino Due board through the
Olimex ARM-USB-OCD-H interface on a Linux pre-installed PC1. Use Eclipse
IDE for C/C++ Developers as a graphical interface, GCC2 as ARM cross-
compiler, and OpenOCD for communication with the ARM-USB-OCD-H inter-
face. Find the required software on the Internet. Create and cross-compile a
template project with an empty main() function. Use ASF3 code for µC initial-
ization from reset to the start of the main() function. Upload the cross-compiled
project to the Arduino Due board.

Explanation

Installing the environment

The Eclipse is a platform consisting of several components used to develop ap-
plications in various programming languages. Since our code will be in the C
programming language the component Eclipse IDE for C/C++ Developers needs
to be installed. The Eclipse IDE for C/C++ Developers tarball can be down-
loaded from the Eclipse website [1]. Open a terminal window and extract the files
in tarball. To open the terminal window, go to the Applications in the menu bar,
select Accessories, and run the Terminal program. A terminal window with the
user home directory as the current working directory is opened. To extract the
tarball (i.e., the eclipse-cpp-kepler-SR2-linux-gtk-x86_64.tar.gz file), use
tar command.

user@host:~$
tar xvfz eclipse-cpp-kepler-SR2-linux-gtk-x86_64.tar.gz

The Eclipse requires a Java VM4 to run. Installing the Java SE5 Development
Kit solves that. The JDK6 tarball can be downloaded from the Oracle website
[2]. Change into the eclipse directory created at the previous tarball extraction
and extract the JDK tarball there.

user@host:~$ cd eclipse
user@host:~/eclipse$ tar xvfz jdk-8u45-linux-x64.tar.gz

1The Wheezy release of the Debian Linux distribution
2GCC ... GNU Compiler Collection
3ASF ... Atmel Software Framework
4VM ... Virtual Machine
5SE ... Standard Edition
6JDK ... Java Development Kit

2 EXERCISE 1. INSTALLING IDE

To ensure that the Eclipse will run on the installed JVM7, it has to be specified
in eclipse.ini file. The file can be edited with an arbitrary text editor (i.e., vi,
nano, gedit, etc.). Add the following lines before the VM arguments line (i.e.,
before the -vmargs line) in eclipse.ini.

-vm
/home/user/eclipse/jdk1.8.0_45/bin/java

The Eclipse will serve as a graphical interface to the GNU tools (i.e., compiler,
linker, debugger, etc.). The GNU tools (i.e., GCC) for ARM embedded pro-
cessors will be used. GCC [3] is a collection of compilers supporting various
programming languages and targeting various platforms (i.e., µCs or µPs8). In
our case, the GCC ARM cross-compiler is required. The source code will be
cross-compiled on a PC building an executable for an ARM Cortex processor.
The GCC for ARM embedded processors tarball can be downloaded from the
GCC ARM Embedded project on the Launchpad website [4]. Extract the tarball
(i.e., the gcc-arm-none-eabi-4_9-2015q1-20150306-linux.tar.bz2 file) into
the eclipse directory.

user@host:~/eclipse$
tar xvjf gcc-arm-none-eabi-4_9-2015q1-20150306-linux.tar.bz2

To communicate with the Olimex ARM-USB-OCD-H interface [5], the OCD soft-
ware is required. The OCD (i.e., OpenOCD) provides programming and debug-
ging of the target embedded system (i.e., µC on the Arduino Due board). To
do so, a debug interface (i.e., the Olimex ARM-USB-OCD-H) is needed to pro-
duce the required electric signals (i.e., JTAG). In our case, the Eclipse will com-
municate with the ARM-USB-OCD-H interface. Thus the GNU ARM Eclipse
OpenOCD distribution of the OpenOCD project [6] will be installed. The tar-
ball can be downloaded from the GNU ARM Eclipse Plug-ins project on the
Sourceforge website [7]. Extract the tarball (i.e., the gnuarmeclipse-openocd-de
bian64-0.8.0-201503201909.tgz file) into the eclipse directory.

user@host:~/eclipse$
tar xvfz gnuarmeclipse-openocd-debian64-0.8.0-201503201909.tgz

The OpenOCD software needs to be properly configured to use the selected
debug interface (i.e., the Olimex ARM-USB-OCD-H) talking to the selected
target embedded system (i.e., the Atmel AT91SAM3X8E µC [8] on the Ar-
duino Due board [9]). Create the following openocd.cfg configuration file in
openocd/0.8.0-201503201909/scripts subdirectory of the eclipse directory.

source [find interface/ftdi/olimex-arm-usb-ocd-h.cfg]
source [find target/at91sam3ax_8x.cfg]
$_TARGETNAME configure -event gdb-attach {

echo "Halting target"
halt

}

The Olimex ARM-USB-OCD-H interface and the AT91SAM3X8E Arduino Due
µC are specified in openocd.cfg. Also halting of the target processor is performed

7JVM ... Java Virtual Machine
8µP ... MicroProcessor

3

on the GDB9 attach event10. Use chmod command to set openocd.cfg permissions
to read/write for the owner and read for everyone else.

user@host:~/eclipse$
chmod 644 openocd/0.8.0-201503201909/scripts/openocd.cfg

OpenOCD software needs the lib32ncurses5 package to be installed. Also the
libcanberra-gtk-module is required by Eclipse. To install both packages, root
user permissions are required.

root@host:~# apt-get update
root@host:~# apt-get install lib32ncurses5
root@host:~# apt-get install libcanberra-gtk-module

The Olimex ARM-USB-OCD-H interface is identified by the udev daemon when
plugged in. The udev identifies a new device and creates its name according to
the rules in /etc/udev/rules.d directory. The 99-openocd.rules file contains
rules for various interfaces (including the ARM-USB-OCD-H) the OpenOCD can
work with. It has to be copied into the /etc/udev/rules.d directory. The rules
has to be reloaded to take effect. The root user permissions are required.

root@host:~# cp /home/user/eclipse/openocd/0.8.0-201503201909/con
trib/99-openocd.rules /etc/udev/rules.d

root@host:~# udevadm control --reload-rules

To use the Olimex ARM-USB-OCD-H interface, the user has to be a member of
the plugdev group.

root@host:~# usermod -a -G plugdev user

It is time to run the freshly installed Eclipse for the first time.

user@host:~/eclipse$./eclipse

To make the Eclipse environment work with the Olimex ARM-USB-OCD-H
OpenOCD interface and AT91SAM3X8E µC, the Eclipse extensions for GNU
tools for ARM embedded processors have to be installed. These extensions are
provided by the GNU ARM plug-ins. Since debugging sessions are powered by
the GDB, the C/C++ GDB Hardware Debugging plug-in is a prerequisite. It is
a part of the CDT11 plug-ins. The CDT zip file (i.e., the cdt-master-8.3.0.zip
file) can be downloaded from the Eclipse website [1]. To install the C/C++ GDB
Hardware Debugging plug-in into the Eclipse, select the Install New Software...
menu item from the Help menu in menu bar. The Install dialog box opens. Press
the Add... button to add a new software repository. In Add Repository dialog box
shown in Fig. 1.1 specify the CDT repository, i.e., Name: CDT, Location: absolute
path to the cdt-master-8.3.0.zip file.

After the repository is specified, the Install dialog box regains the focus. Select
the C/C++ GDB Hardware Debugging plug-in from the CDT Optional Features
list as shown in Fig. 1.2. Press the Next > button and follow the installation
procedure.

9GDB ... GNU debugger
10Occurs when the GDB connects to the target (i.e., at the beginning of the debug session).
11CDT ... C/C++ Development Tooling

4 EXERCISE 1. INSTALLING IDE

Figure 1.1: The Add Repository dialog box

Figure 1.2: Select C/C++ GDB Hardware Debugging plug-in in the Install dialog
box

Install the GNU ARM plug-ins in the same manner. The zip file (i.e., the
ilg.gnuarmeclipse.repository-2.8.1-201504061754.zip file) can be down-
loaded from the GNU ARM Eclipse Plug-ins project on the Sourceforge website [7].
This time specify the repository as Name: GNU ARM Eclipse Plug-ins, and Loca-
tion: absolute path to the ilg.gnuarmeclipse.repository-2.8.1-20150406175
4.zip file. In the Install dialog box select the entire package of the GNU ARM
C/C++ Cross Development Tools plug-ins.

Finally, a path to the OpenOCD binary directory has to be configured in
the Eclipse environment. To do so, select the Preferences menu item from the
Window menu in menu bar. The Preferences dialog box opens. Select the String
Substitution item from Run/Debug as shown in Fig. 1.3. Select the openocd_path
variable and press the Edit... button. In the Edit Variable: openocd_path dialog
box specify the absolute path to the OpenOCD binary directory, i.e., absolute
path to the openocd/0.8.0-201503201909/bin directory.

Figure 1.3: Specifying absolute path to the OpenOCD binary directory

At this point, a working environment consisting of the Eclipse with the required

5

plug-ins, the GNU tools and the OpenOCD software is installed as shown in Fig.
1.4.

Eclipse

C/C++ GDB
Hardware
Debugging

GNU ARM

Java

GNU tools

GDB client

GDB server

OpenOCD

USB

ARM-USB-OCD-H

JTAG

AT91SAM3X8E

Figure 1.4: Working environment

A few handy settings of the Eclipse environment follow to ease the usage of
the created working environment. The settings are optional.

Window | Preferences → Preferences dialog box → General | Editors | Text Ed-
itors → enable Show print margin and Show line numbers → press the Apply
button

Window | Preferences → Preferences dialog box→ General |Workspace → disable
Build automatically and enable Save automatically before build → press the Apply
button

Window | Preferences → Preferences dialog box → C/C++ | Build | Console
→ enable Bring console to top when building (if present) and Wrap lines on the
console, set Limit console output (number of lines) to 5000 → press the Apply
button

Window | Preferences → Preferences dialog box → C/C++ | Code Analysis →
disable all problems → press the Apply button

Window | Preferences → Preferences dialog box → C/C++ | Code Style | For-
matter → set Active profile to GNU [built-in] → press the Apply button

Window | Preferences → Preferences dialog box → C/C++ | Editor → in the
Documentation tool comments section, set Workspace default to Doxygen → press
the Apply button

Window | Preferences → Preferences dialog box → C/C++ | Editor | Folding →
in the Initially fold this region types section, disable Header Comments → press
the Apply button

Window | Preferences → Preferences dialog box → C/C++ | Indexer → in the
Build configuration for the indexer section, select Use active build configuration
→ press the Apply button

Window | Preferences → Preferences dialog box → Run/Debug | Launching →
in the Launch Operation section, enable Always launch the previously launched
application → press the Apply button

6 EXERCISE 1. INSTALLING IDE

Selecting an appropriate µC boot mode

The Atmel AT91SAM3X8E µC on the Arduino Due board has three non-volatile
memory blocks that can retain their contents when not powered. Those are
ROM12 (16kB) starting at the 0x00000000 address, the first Flash memory bank
(256kB) starting at 0x00080000, and the second Flash memory bank (256kB)
starting at 0x000c0000. The reset vector13 of the µC can reside in any of them.
The location of the reset vector is selected by the GPNVM14 bits (see Tab. 1.1)
[8].

GPNVM bit if bit value = 0 if bit value = 1
0 (security bit) Flash access enabled Flash access disabled
1 (boot mode selection) reset vector in ROM reset vector in Flash
2 (flash selection)* reset vector in Flash0 reset vector in Flash1

*used only when GPNVM bit1 = 1

Table 1.1: GPNVM bits

Any kind of outside access to Flash is disabled when the GPNVM bit0 is set.
Therefore, the code in the Flash is protected and cannot be read by the third
party. The protected code can only be deleted by tying the Erase pin to high
voltage level for at least 220ms (i.e., pressing the ERASE button on the Arduino
Due board for 220ms [9]). The GPNVM bits are also erased by this procedure.
Thus, the access to fresh empty Flash is enabled. Of course, the GPNVM bit0
must not be set during the code development.

The GPNVM bit1 selects the location of the reset vector. When ROM is
selected, the SAM-BA15 program hard-coded there is started. It programs16 the
on-chip Flash memory via the UART17 or USB. On the other hand, when the
Flash is selected, the reset vector is read from the first or the second Flash bank
regarding the GPNVM bit2. Since the GDB will be used for uploading the code
into the on-chip Flash, the GPNVM bit1 must be set. SAM-BA will not be used.

The code can be compiled for either the first, or the second Flash bank. The
bank is selected in the linker script provided by the ASF. Since the ASF uses the
first Flash bank (i.e., Flash0), the GPNVM bit2 must not be set.

The default value of the GPNVM bits is zero (i.e., when the ERASE button
is pressed). To get the desired values (i.e., GPNVM bits = 0b010), the GPNVM
bits have to be set with the OpenOCD. Plug in the Olimex USB-ARM-OCD-H
debug interface with the Arduino Due board connected over the JTAG. Open two
terminal windows (Applications → Accessories → Terminal). In the first terminal
start the OpenOCD debugger.

user@host:~/eclipse/openocd/0.8.0-201503201909/bin$./openocd

12ROM ... Read-Only Memory
13Reset vector is loaded into the program counter register at power-up. It defines the µC

starting address.
14GPNVM ... General Purpose Non-Volatile Memory
15SAM-BA ... Smart ARM MCU18 - Boot Assistant
16SAM-BA starts the FFPI19 to program the on-chip Flash.
17UART ... Universal Asynchronous Receiver/Transmitter
18MCU ... µC Unit
19FFPI ... Fast Flash Programming Interface

7

GNU ARM Eclipse 64-bit Open On-Chip Debugger 0.8.0-00063-gbda7f5c
(2015-01-01-00:00)

Licensed under GNU GPL v2
For bug reports, read
http://openocd.sourceforge.net/doc/doxygen/bugs.html
Info : only one transport option; autoselect ’jtag’
adapter speed: 500 kHz
adapter_nsrst_delay: 100
jtag_ntrst_delay: 100
cortex_m reset_config sysresetreq
adapter speed: 500 kHz
Info : clock speed 500 kHz
Info : JTAG tap: sam3.cpu tap/device found: 0x4ba00477

(mfg: 0x23b, part: 0xba00, ver: 0x4)
Info : sam3.cpu: hardware has 6 breakpoints, 4 watchpoints

Connect to the OpenOCD debugger via telnet in the second terminal. Use local-
host 4444 port. The GPNVM bits can be set and viewed with the at91sam3
OpenOCD command [6].

user@host:~$ telnet localhost 4444
Trying ::1...
Trying 127.0.0.1...
Connected to localhost.
Escape character is ’ˆ]’.
Open On-Chip Debugger
> reset init
JTAG tap: sam3.cpu tap/device found: 0x4ba00477

(mfg: 0x23b, part: 0xba00, ver: 0x4)
target state: halted
target halted due to debug-request, current mode: Thread
xPSR: 0x01000000 pc: 0x0010004c msp: 0x20001000
> at91sam3 gpnvm clr 0
> at91sam3 gpnvm set 1
> at91sam3 gpnvm clr 2
> at91sam3 gpnvm
sam3-gpnvm0: 0
sam3-gpnvm1: 1
sam3-gpnvm2: 0
> exit
Connection closed by foreign host.

Creating a template project

To create an empty template project in the Eclipse environment, select the
Project... submenu item from the File | New menu. In the New Project dia-
log box shown in Fig. 1.5 select the C/C++ | C Project. In the next, C Project
dialog box shown in Fig. 1.6 set the Project name and select Makefile project |
Empty Project for the Project type, and Cross ARM GCC for the Toolchains.

An empty makefile project is created. A path to the GNU tools directory (i.e.,
/home/user/eclipse/gcc-arm-none-eabi-4_9-2015q1/bin) has to be set.

8 EXERCISE 1. INSTALLING IDE

Figure 1.5: The New Project dialog box

Figure 1.6: The C Project dialog box

9

Highlight the project in the Project Explorer view of the C/C++ perspective20.
Select the Properties menu item from the Project menu. In the Properties for
<projectname>21 dialog box set the following:

C/C++ Build | Settings → Toolchains tab → press the Apply button22

C/C++ Build | Environment → press the Add... button → New variable dialog
box→ set variable Name to PATH and Value to /home/user/eclipse/gcc-arm-no
ne-eabi-4_9-2015q1/bin → press the OK button → back in the Properties for
<projectname> dialog box press the Apply button (see Fig. 1.7)

Figure 1.7: Path to the GNU tools directory

Atmel provides the ASF software library for its µCs. It contains source code
for µC initialization, APIs23 to peripheral units, etc. For Cortex based processors,
the CMSIS24 provided by ARM [10] is included. The ASF software library can
be downloaded from the Atmel website [11]. It comes as a standalone archive
file (i.e., as a asf-standalone-archive-3.21.0.6.zip file). Makefiles and linker
scripts are added, so the code can be compiled and linked using the GCC [3] and
GNU Make utility [12]. The AT91SAM3X8E µC source code files accompanied by
makefiles and linker script (all extracted from the ASF library) can be downloaded
from [13]. Note that only the files needed in this laboratory exercises are included.

There is a branched directory structure with a lot of various files in [13], which
can be a bit confusing. Thus, the three key files are pointed out here:

• The sam/utils/cmsis/sam3x/source/templates/gcc/startup_sam3x.c
file contains the exception table. The second entry in the table is the reset

20For explanation of the Eclipse environment views and perspectives, consult the documenta-
tion pages on the Eclipse website [1].

21The name template is used as <projectname> in figures.
22The toolchain settings have to be applied although no changes are made. Otherwise the

build command (i.e., make) is not set. This is a bug.
23API ... Application Programming Interface
24CMSIS ... Cortex Microcontroller Software Interface Standard

10 EXERCISE 1. INSTALLING IDE

vector loaded into the program counter register at power-up. The reset vec-
tor refers to the Reset_Handler() function also defined in this file. Thus,
the µC starts in Reset_Handler() which after some basic initialization25

calls the main() function. The main() function is considered as the begin-
ning of the program in the C programming language.

• The config.mk contains the build settings used by the GNU Make utility.
The compiler and linker flags, linker script filename, output (elf) filename,
list of C and assembly source files, include paths, library paths, etc., are
defined here.

• The sam/utils/linker_scripts/sam3x/sam3x8/gcc/flash.ld file is the
linker script. Among others, the address of the selected Flash memory bank
is defined here (see page 6).

Extract and copy the files from [13] into the project directory, e.g., /home/user/
workspace/<projectname>.

To run and debug the freshly created template project, a debug configuration
has to be defined. Highlight the project in the Project Explorer view of the C/C++
perspective. Select the Debug Configurations... menu item from the Run menu.
In the Debug Configurations dialog box select the GDB OpenOCD Debugging
item and click the New () button. Select the newly created <projectname>
Default debug configuration under the GDB OpenOCD Debugging item. Define
the configuration settings in tabs on the right side of the Debug Configurations
dialog box as shown in Fig. 1.8.

Figure 1.8: Debug configuration settings

25Copy the relocate segments to RAM26, clear the bss segment, set the exception table
address (e.g., to 0x0008000 = the first Flash memory bank), all according to the linker script,
and initialize the libc standard C library. Note that the first entry in the exception table is the
initial stack top address loaded into the r13 SP27 register at power-up.

26RAM ... Random Access Memory
27SP ... Stack Pointer

11

In the Main tab, define the C/C++ Application executable file as it is defined
in the config.mk file. The TARGET_FLASH =elf line defines the name of the
elf file.
In the Debugger tab, define the OpenOCD Config options. The options reside in
the openocd.cfg file (see page 2) which has to be passed as an argument to the
OpenOCD executable.
In the Startup tab, the debug starting-point can be defined with Set breakpoint
at option. After the upload, the program on the target µC board starts with
execution. It stops at the first breakpoint set to the main() function by default.
By changing the Set breakpoint at option, the initial breakpoint can be placed
elsewhere (e.g., to the Reset_Handler() function right “after” the reset vector
and even before the basic initializations).
In the Common tab, the directory containing the *.launch file, where setting are
saved, is specified.

There is an inconsistency in the standard cdefs.h28 and the ASF compi
ler.h29 header file. Both define the __always_inline30 macro. Therefore one
of the definitions is redundant. Since the definitions are not exactly identic, the
ASF definifion is used and the definition in the cdefs.h header file is commented
out. With this minor hack, the project can be compiled by selecting the Build
Project menu item from the Project menu.

To upload the compiled elf file to the target µC board (i.e., the Arduino Due
board) and start a debug session, select the Debug Configurations... menu item
from the Run menu. Select the project under the GDB OpenOCD Debugging item
and press the Debug button.

Enabling serial communication over the USB

When the Programming USB port on the Arduino Due board is connected to a
Linux PC, it is identified as a new serial device (e.g., /dev/ttyACM0). The user
will be able to access such a device if it is a member of the dialout group. The
super user can add the user into the group with the following command:

root@host:~# usermod -a -G dialout user

The change takes effect at the next login.
An arbitrary serial terminal program is also required for serial communication.

The PuTTY serial console can be used. It can be installed to a Linux PC with
the commands:

root@host:~# apt-get update
root@host:~# apt-get install putty

carried out as the super user. To start PuTTY, select the PuTTY SSH Client
submenu item from the Applications | Internet menu. Note that the serial terminal
settings must match the UART configuration (see Appendix A). An example of
the PuTTY serial settings is shown in Fig. 1.9.

28Located in the include/sys subdirectory, e.g., /home/user/eclipse/gcc-arm-none-eabi-4_
9-2015q1/arm-none-eabi/include/sys/cdefs.h.

29Located in the sam/utils subdirectory, e.g., /home/user/workspace/<projectname>/sam/
utils/compiler.h.

30In line 359 of cdefs.h and in line 162 of compiler.h.

12 EXERCISE 1. INSTALLING IDE

Figure 1.9: An example of the PuTTY serial settings

Exercise 2

Tasks and scheduling algorithms in
FreeRTOS™

Create four FreeRTOS [14] tasks. Assign the same above idle priority to two
tasks, and the idle priority to the other two. No task should ever end, each should
run in an infinite loop. Assign a LED1 and a button key on the external board
to each task. In every iteration of the infinite loop, a task should turn its LED
on and all the other LEDs off to indicate which task is running. The Idle task
should turn all the LEDs off. Also, in every iteration of the infinite loop, a task
should check all the button keys. If a button key belonging to a particular task
is pressed, the task should be suspended, if released, the task should be resumed.
Thus, a task is suspended while its button key is pressed, and vice versa. Observe
various scheduling algorithms available in FreeRTOS. Can a running task explicitly
request a context switch? How a delay can be effectively implemented?

Explanation

Create a new empty project in the Eclipse working environment as explained in
Exercise 1. Connect the Arduino Due board to the host PC over the Olimex
ARM-USB-OCD-H interface, and to the external board button keys and LEDs,
as shown in Fig. 2.1.

The default main() function of the freshly created empty project can be
found in the src/main.c file. The first function called is prvSetupHardware()
where the hardware initialization is performed. Inside the prvSetupHardware()
function, the functions sysclk_reinit(), NVIC_SetPriorityGrouping() and
board_init() perform the basic initialization of the AT91SAM3X8E µC and the
Arduino Due board. To be able to read the keys and drive the LEDs, the pins
from PC21 to PC26, PC28 and PC29 have to be configured as GPIO2 pins (see Fig.
2.1). The keys require pull-up resistors on their input pins, while the debouncing
filters are not necessary. See Appendix A for GPIO pin configuration and usage.

FreeRTOS configuration

The FreeRTOS properties can be set by options in the src/FreeRTOSConfig.h
configuration file. The relevant options will be introduced in parallel with the
explanation of the exercises in this script.

1LED ... Light Emitting Diode
2GPIO ... General Purpose I/O3

3I/O ... Input Output

14 EXERCISE 2. TASKS AND SCHEDULING ALGORITHMS

Tasks in FreeRTOS

A task is a standalone program implemented as a function taking one void pointer
argument, i.e., a function of type void func(void *). The FreeRTOS can ‘simul-
taneously’ run more than one task by using the time slicing technique. A task can
be in one of four states (see Fig. 2.2):

• ready; task is ready to run whenever scheduled,

• running; there is always exactly one task in running state,

• suspended; task stays suspended until resumed, and

• blocked; task is waiting for an event.

P
C USB

U
S
B
-A

R
M
-O

C
D
-H

JTAG

Arduino Due

A
T
91
S
A
M
3X

8
E

PC28

PC26

PC25

PC24

PC23

PC22

PC21

PC29

GND4

3

4

5

6

7

8

9

10

GND

T1

T2

T3

T4

D1

D2

D3

D4

GND

External board

Figure 2.1: PC / Olimex ARM-USB-OCD-H / Arduino Due / External board
connection for Exercises 2 in 3

suspended suspended

suspended

suspended

resumed

ready
scheduled

unscheduled
running

event

blocked wait for event

Figure 2.2: Task state machine

4GND ... Ground

15

Task creation and FreeRTOS starting

A new task is created by the xTaskCreate() function5 [15] [16]. The declaration
of the function is:

BaseType_t xTaskCreate(TaskFunction_t pvTaskCode,
char *pcName,
unsigned short usStackDepth,
void *pvParameters,
UBaseType_t uxPriority,
TaskHandle_t *pxCreatedTask);6

The function returns the pdPASS value on success. The function will fail if there
is not enough heap memory available to allocate the task’s stack and TCB7. A
newly created task is placed into the ready state. The function arguments are:
pvTaskCode ... pointer to task function
pcName ... task name8
usStackDepth ... task’s stack size in words9
pvParameters ... pointer passed to the task as an argument
uxPriority ... task priority (zero is the lowest priority)
pxCreatedTask ... pointer to where a handle to the created task is re-

turned; if NULL, the handle is not returned
For instance, the function call

xTaskCreate(tsk, "Task", 150, (void *)2, 1, &xHnd);

creates a task named "Task" coded in the tsk() function of type void tsk(void
*). It has 600 bytes of stack. The pointer passed to the task function, e.g., arg,
has value 0x00000002. The task priority is one, just above the lowest. Pointer
to a handle to the newly created task is written into the xHnd variable defined as
TaskHandle_t xHnd;. Note that xHnd is actually a void pointer, and &xHnd is an
address where this void pointer resides.

The FreeRTOS scheduler is started by vTaskStartScheduler() function [15]
[16] declared as:

void vTaskStartScheduler(void);

If the scheduler is started successfully, the function will never return. The FreeR-
TOS scheduler starts to ‘simultaneously’ execute the created tasks following the
scheduling algorithm. The function also creates an additional Idle task with the
lowest priority. Therefore, in case when no application created task is ready to be
scheduled into the running state, the Idle task will be available. Note that exactly
one task must be in the running state at all times. Starting FreeRTOS scheduler
will fail if there is not enough heap memory available for allocating the Idle task.

5The configSUPPORT_DYNAMIC_ALLOCATION option must not be set to zero in the src/FreeRTOS
Config.h configuration file to make the xTaskCreate() function available.

6BaseType_t is the most suitable integer type for the architecture, i.e., a 32-bit integer type
for the AT91SAM3X8E µC.

TaskFunction_t type is a pointer to a function of type: void func(void *arg).
UBaseType_t is the most suitable unsigned integer type for the architecture, i.e., an unsigned

32-bit integer type for the AT91SAM3X8E µC.
TaskHandle_t is a void pointer type.
7TCB ... Task Control Block, i.e., task data used by FreeRTOS
8Maximum number of caharacters (ending NULL character included) in task name is set by

the configMAX_TASK_NAME_LEN option in the src/configFreRTOSConfig.h configuration file.
9For AT91SAM3X8E, one word is four bytes.

16 EXERCISE 2. TASKS AND SCHEDULING ALGORITHMS

In that case, the vTaskStartScheduler() function returns. The FreeRTOS is
thus started with a simple vTaskStartScheduler() call:

vTaskStartScheduler();

A pseudo code that creates the required tasks and starts the FreeRTOS sched-
uler is as follows:

create two tasks with priority one
create two tasks with priority zero (idle priority)
start scheduler

To use the xTaskCreate() and vTaskStartScheduler() functions, and the
accompanying data types, the FreeRTOS.h and task.h header files have to be
included.

#include <FreeRTOS.h>
#include <task.h>

Suspending and resuming a task

Before discussing the actual implementation of the task functions, a lesson, how
a task can be suspended and resumed, is needed. A task can be suspended by the
vTaskSuspend() function10 call [15] [16]. The declaration of the function is:

void vTaskSuspend(TaskHandle_t pxTaskToSuspend);

The function suspends the specified task, i.e., places the task into the suspended
state. The argument of the function is:
pxTaskToSuspend ... task handle

The following vTaskSuspend() function call, for example, suspends a task speci-
fied by the xHnd handle:

vTaskSuspend(xHnd);

Passing NULL argument is equivalent to passing a handle of the calling task. The
task suspends itself.

To resume a suspended task, the vTaskResume() function10 can be used [15]
[16]. The declaration of the function is:

void vTaskResume(TaskHandle_t pxTaskToResume);

The function call transfers the specified task from suspended into ready state
(see Fig. 2.2). The function call will have no effect if the task to be resumed is
not in the suspended state. The argument of the function is:
pxTaskToResume ... task handle

The following vTaskResume() function call, for instance, resumes previously sus-
pended task specified by the xHnd handle:

vTaskResume(xHnd);

10The INCLUDE_vTaskSuspend option must be set to one in the src/FreeRTOSConfig.h config-
uration file to make the vTaskSuspend() and vTaskResume() functions available.

17

Task implementation

The four tasks in this exercise are actually four instances of the same algorithm.
In every iteration of an endless loop, the LED corresponding to the task is turned
on, and the tasks belonging to currently pressed keys are suspended. Other LEDs
are turned off, and other tasks are resumed. The pseudo code of the algorithm is
as follows:

while forever
turn LED belonging to this task on, others off
get key positions
suspend tasks belonging to pressed keys, resume others

The Idle task

When the FreeRTOS is started, an additional Idle task with the lowest, i.e.,
zero or idle, priority is created. The stack depth of the Idle task is set by the
configMINIMAL_STACK_SIZE option in the src/FreeRTOSConfig.h configuration
file. The Idle task basically just waits in an endless loop. Its only real occupa-
tion is releasing system resources, e.g., heap memory, after an application task is
deleted. Otherwise, the Idle task is equivalent to any other application created
task with idle priority. The Idle task is invisible to the application by default.

If the configUSE_IDLE_HOOK will be set to one in the src/FreeRTOSConfig.h
configuration file, the vApplicationIdleHook() callback function is called in ev-
ery iteration of the Idle task endless loop [15] [16]. The function has to be defined
in the application code as:

void vApplicationIdleHook(void) {
...

}

The Idle task calls the vApplicationIdleHook() function regularly. The function
have to return within a short period of time, or else the Idle task cannot perform
the releasing promptly. To avoid an error when no task is available to enter the
running state, the idle task must never be blocked, suspended or deleted.

The Idle task functionality required in this exercise is implemented in the
vApplicationIdleHook() function. The pseudo code of the function is as follows:

turn all LEDs off
get key positions
suspend tasks belonging to pressed keys, resume others

Scheduling algorithms

With all the code ready, different scheduling algorithms can be tested.

Cooperative scheduling is selected when the configUSE_PREEMPTION option
is set to zero in the src/FreeRTOSConfig.h configuration file. A context switch
occurs when the running task ends, is blocked, is suspended, or explicitly requests
a switch. The running task cannot be preempted by a higher priority task. The
next task to enter running state is a ready task with the highest priority. If there
is more than one candidate, a task, being in ready state longest, will be selected.
A context switch can be explicitly requested by calling the taskYIELD() function
[15] [16] declared as:

18 EXERCISE 2. TASKS AND SCHEDULING ALGORITHMS

void taskYIELD(void);

Thus, the running task places itself into ready state by the following call:

taskYIELD();

The Idle task requests a context switch in every iteration of its endless loop.
With cooperative scheduling, the request cannot be canceled by setting the
configIDLE_SHOULD_YIELD option to zero. Therefore, the Idle task should not be
able to block any application task.

Prioritized preemptive scheduling without time slicing is selected when
the configUSE_PREEMPTION option is set to one and the configUSE_TIME_SLIC
ING option is set to zero in the src/FreeRTOSConfig.h configuration file. A con-
text switch occurs when a task with higher priority than running task becomes
ready, or when the running task ends, is blocked, is suspended, or explicitly re-
quests a switch. The next task to enter running state is a ready task with the
highest priority. If there is more than one candidate, a task, being in ready state
longest, will be selected.

The Idle task requests a context switch in every iteration of its endless loop.
The requests can be canceled by setting the configIDLE_SHOULD_YIELD option to
zero. Therefore, the Idle task can block an idle priority application task.

Prioritized preemptive scheduling with time slicing is selected when the
configUSE_PREEMPTION and configUSE_TIME_SLICING options are set to one
in the src/FreeRTOSConfig.h configuration file. The time slice frequency is
set by the configTICK_RATE_HZ option. The time slice length11 is therefore
configTICK_RATE_HZ−1 seconds.

With this scheduling algorithm, a context switch will occur when a task with
higher priority than running task becomes ready, or at the beginning of a new
time slice if a task with running task’s priority is ready, or when the running task
ends, is blocked, is suspended, or explicitly requests a switch. The next task to
enter running state is a ready task with the highest priority. If there is more than
one candidate, a task, being in ready state longest, will be selected.

The Idle task requests a context switch in every iteration of its endless loop.
The requests can be canceled by setting the configIDLE_SHOULD_YIELD option to
zero. Regardless canceling, the Idle task cannot block any application task since
context switch takes place at the beginning of a new time slice.

Delay

If an application task at some point needs to wait for a predefined amount of
time, the most efficient way will be to place the task into the blocked state for
that period. That can be achieved with the vTaskDelay() function13 [15] [16]
declared as:

11A share of time consumed by the operating system overhead increases with time slice short-
ening. Therefore, the time slice should not be too short. On the other end, the maximum time
slice length is 1s, which cannot be achieved by any MCK12 frequency since the FreeRTOS uses
the 24-bit SysTick timer, e.g., tSLICEMAX

∣∣
fMCK=84MHz

= 224−1
fMCK

< 200ms.
12MCK ... Master Clock
13The INCLUDE_vTaskDelay option in the must be set to one in the src/FreeRTOSConfig.h

configuration file to make the vTaskDelay() function available.

19

void vTaskDelay(TickType_t xTicksToDelay);14

The function places the calling task into a blocked state for the specified number
of time slices, i.e., ticks. When the period expires, the task is placed into ready
state. The delay interval has to be inconveniently specified in number of ticks. To
convert milliseconds into a number of ticks, the pdMS_TO_TICKS() macro can be
used [15] [16]. For instance, the following vTaskDelay() call makes a task wait
for 2s:

vTaskDelay(pdMS_TO_TICKS(2000));

Note that the vTaskDelay() function must never be called from the vApplication
IdleHook() callback function since the Idle task must not be placed into the
blocked state.

Include a delay into one or more of the four tasks and observe the scheduling
algorithms.

14TickType_t is an unsigned 32-bit integer by default. It will be set to an unsigned 16-bit
integer if the configUSE_16_BIT_TICKS option is set to one.

Exercise 3

Implementing other scheduling algorithms

Write a code for four finite tasks with various BTs1. A task should run in a finite
loop and end after a predefined number of iterations defining the BT. Use button
keys on the external board as asynchronous task triggers. Each time a button
key is pressed, a request for a single run of the corresponding finite task should
be issued. Use LEDs on the external board to indicate which task is currently
running. Implement the FCFS2, SJF3, SRTF4 and RR5 scheduling algorithms
by dynamically adjusting the task priorities. Which scheduling algorithms are
cooperative, and which are preemptive? Which can cause the convoy effect, and/or
the CPU6 starvation? Why the FreeRTOS sometimes skips a task, i.e., the task
is not run, although a request was issued?

Explanation

Create a new empty project in the Eclipse working environment as explained in
Exercise 1. Connect the Arduino Due board to the host PC over the Olimex
ARM-USB-OCD-H interface, and to the external board button keys and LEDs,
as shown in Fig. 2.1. Configure the pins from PC21 to PC26, PC28 and PC29 as
GPIO pins. The pull-up resistors are required on input pins, i.e., keys. To properly
detect the key pressing, the debouncing filters are also needed. See Appendix A
for GPIO pin configuration and usage. Start the FreeRTOS scheduler as explained
in Exercise 2. As the FreeRTOS is started without any tasks created, the only
task at the beginning is the Idle task.

Ending a finite task

A finite task is usually executed at an event, i.e., a key press. The task ends
when its job is done, e.g., the event is handled. In the FreeRTOS, a task is a
standalone function that should never return. Therefore, it cannot just end. The
vTaskDelete() function7 [15] [16] must be called instead. The declaration of the
function is:

void vTaskDelete(TaskHandle_t pxTask);

1BT ... Burst Time, i.e., task’s running state time
2FCFS ... First Come First Serve
3SJF ... Shortest Job First
4SRTF ... Shortest Remaining Time First
5RR ... Round Robin
6CPU ... Central Process Unit
7The INCLUDE_vTaskDelete option in the must be set to one in the src/FreeRTOSConfig.h

configuration file to make the vTaskDelete() function available.

22 EXERCISE 3. OTHER SCHEDULING ALGORITHMS

The function informs the FreeRTOS kernel to delete the specified task. In gen-
eral, any task can delete any other task. The task related system resources
are released later by the Idle task (see Exercise 2). The function argument is:
pxTask ... task handle

Passing NULL argument is equivalent to passing a handle of the calling task. The
task deletes itself. In that case, the function never returns. To end a finite task,
the task must call the vTaskDelete() function and delete itself before ending:

void func(void *arg) {
...

vTaskDelete(NULL);
}

To use the vTaskDelete() function, the FreeRTOS.h and task.h header files have
to be included.

#include <FreeRTOS.h>
#include <task.h>

FCFS scheduling algorithm

The FCFS scheduling algorithm executes tasks one after another in FIFO8 order
as their requests arrive. There is no priority, nor preemption. In FreeRTOS, the
FCFS scheduling algorithm can be implemented by cooperative scheduling and
all tasks having the same idle priority. The idle priority allows the Idle task to
participate, thus being able to release system resources after task ending. Since
there is no task preemption, the FCFS is a cooperative algorithm.

While a long BT task is being executed, new single run task requests pile
up. The newly arrived tasks are made to wait the line. Every request, short BT
tasks are no exception, is added at the end of the line. Such an accumulation
of waiting tasks is called the convoy effect. The convoy effect can significantly
increase the average waiting time9 that leads to lower CPU utilization [17]. The
FCFS scheduling algorithm can cause the convoy effect.

A task is starving of CPU time when continuously denied to enter the running
state. The CPU starvation effect occurs when a scheduling algorithm denies one
or more tasks to be scheduled for infinite amount of time. Assuming finite task
BTs, the FCFS scheduling algorithm cannot cause the CPU starvation under any
task arriving scheme.

The FreeRTOS was started without any tasks created. The only task at the
beginning is the Idle task. It turns all the LEDs off, and creates a task corre-
sponding to the newly pressed key. The created task is placed into the ready
state, which is in fact a run request. The Idle task functionality can be coded
in the vApplicationIdleHook() callback function (see Exercise 2). The pseudo
code of the function is:

turn all LEDs off
for each of the four keys

if the key is down and was up in the previous Idle task iteration
create new key corresponding task

save key position for the next Idle task iteration

8FIFO ... First In First Out
9An average time interval between task request arrival and entering the running state.

23

Current key positions are saved into a global array in each iteration of the Idle
task. They are used to detect a key pressed event.

The tasks implement the same algorithm in a finite loop. The pseudo code of
the finite task algorithm is as follows:

for predefined number of iterations
turn LED belonging to this task on, others off
for each of the four keys

if the key is down and was up in the previous iteration
create new key corresponding task

save key position for the next iteration
delete this task

A new task is created on every key pressed event. Each task requires some oper-
ating system resources, e.g., some heap space. If the line of waiting tasks gets long,
there may not be enough space left to create another task. The xTaskCreate()
function fails (see Exercise 2), and the run request gets skipped. Obviously, skip-
ping is more common when the heap size is small. The heap size can be set by
the configTOTAL_HEAP_SIZE option in the src/FreeRTOSConfig.h configuration
file.

SJF scheduling algorithm

The SJF scheduling algorithm executes tasks one after another. There is no
preemption. A task with shorter BT has higher priority, though. Therefore, a
new task request is not just added at the end of the waiting line, but is inserted
into the line according to its BT. In FreeRTOS, the SJF scheduling algorithm
can be implemented by cooperative scheduling and creating tasks with above idle
priorities according to their BTs. There are four finite tasks with predefined BTs
in this exercise. The priority of the task with the longest BT should be set to one,
the next to two, etc., and the task with the shortest BT should have priority four.
The maximum number of available priorities is set by the configMAX_PRIORITIES
option in the src/FreeRTOSConfig.h configuration file. For SJF scheduling of
four tasks, the configMAX_PRIORITIES option has to be at least five.

Obviously, the SJF scheduling algorithm is a cooperative algorithm. Since the
shorter BT tasks get scheduled first, the waiting line is shorter than in FCFS
algorithm. Consequently, the convoy effect is smaller or none, skipping requests
is rarer. On the other hand, the SJF scheduling algorithm can cause the CPU
starvation. Constantly arriving short BT tasks can block a long BT task infinitely.

The SJF version of the pseudo code of the Idle task callback function is only
slightly modified FCFS version. The tasks has to be created with priorities ac-
cording to their BTs:

turn all LEDs off
for each of the four keys

if the key is down and was up in the previous Idle task iteration
create new key corresponding task with priority reflecting its BT

save key position for the next Idle task iteration

The same goes for the pseudo code of the finite tasks:

24 EXERCISE 3. OTHER SCHEDULING ALGORITHMS

for predefined number of iterations
turn LED belonging to this task on, others off
for each of the four keys

if the key is down and was up in the previous iteration
create new key corresponding task with priority reflecting its BT

save key position for the next iteration
delete this task

Critical section of code

Tasks may want to access the same resource, e.g., global variable, peripheral
device register etc., at the same time. Since preemption can occur at any time,
the outcome depends on the sequence in which the individual tasks access the
resource. The phenomenon is called a race condition. A race condition cannot
occur in cooperative scheduling.

Example: Task A wants to increment, and task B to decrement the same
global variable. At the end, the variable value should be the same. Task A
reads the variable. Before succeeding to store the incremented value back into
the memory, task B preempts task A. Since the variable has not changed yet,
task B decrements the original value. After a while, task A is rescheduled. It
continues with incrementing/storing the previously read value. The global variable
unexpectedly ends incremented. If the preemption take place a bit later, the
expected result will be obtained. Task A would manage to store the incremented
value, and task B would decrement the variable back to its original value.

Critical section of code is a region where a race condition can arise. If pre-
emption is disabled during the critical section, a race condition cannot occur.
The critical section becomes an atom, i.e., a region of code that cannot be in-
terrupted. To make a section of code an atom, the taskENTER_CRITICAL() and
taskEXIT_CRITICAL() macros can be used [15] [16]. The enclosed code becomes
an atom.

...
taskENTER_CRITICAL();
atom code

taskEXIT_CRITICAL();
...

Atoms should be very short. The code inside an atom is guaranteed to stay in
the running state. It must not request a context switch, go blocked, suspended,
or end. The taskENTER_CRITICAL() and taskEXIT_CRITICAL() macros can be
nested.

Task priority modification

Initial task priority defined at task creation (see Exercise 2) can be dynamically
modified. The vTaskPrioritySet() function10 [15] [16] can be used. Its declara-
tion is:

void vTaskPrioritySet(TaskHandle_t pxTask,
UBaseType_t uxNewPriority);

10The INCLUDE_vTaskPrioritySet option must be set to one in the src/FreeRTOSConfig.h
configuration file to make the vTaskPrioritySet() function available.

25

The function modifies the specified task’s priority. The arguments of the function
are:
pxTask ... task handle
uxNewPriority ... task priority

Passing NULL as a task handle argument is equivalent to passing a handle of the
calling task. The task modifies its own priority.

The following vTaskPrioritySet() function call, for instance, sets priority of
the calling task to three:

vTaskPrioritySet(NULL, 3);

SRTF scheduling algorithm

The SRTF scheduling algorithm always runs a task with the shortest remaining
time to completion. A new arrived task will preempt the running task if its BT
is shorter than the remaining time of the running task. In FreeRTOS, the SRTF
scheduling algorithm can be implemented by prioritized preemptive scheduling
without time slicing. The task priority has to be initially set according to its BT.
During the execution, the remaining time to completion decreases, and the task
priority has to be correspondingly raised.

The SRTF scheduling algorithm is a preemptive algorithm. There is no convoy
effect. Skipping requests due to a lack of system resources should not be an issue.
The SRTF algorithm can cause the CPU starvation. Constantly arriving short
BT tasks can block a long BT task infinitely.

A section of code from getting to saving the current key position for the next
iteration is critical and should be an atom. Otherwise, a key press requesting a
short BT task will be handled twice if the remaining time of the running task is
longer. The SRTF version of the pseudo code of the Idle task callback function is
as follows:

turn all LEDs off
for each of the four keys

enter critical section
if the key is down and was up in the previous Idle task iteration

create new key corresponding task with priority reflecting its BT
save key position for the next Idle task iteration
exit critical section

The tasks implement essentially the same algorithm in a finite loop. Since the
remaining time constantly decreases, each task should be adequately raising its
priority during the execution. The number of the remaining finite loop iterations
can be used as a remaining time measure.

In this exercise, there are four tasks with predefined number of iterations.
Suppose the number of iterations of the first task is A, of the second B, of the
third C, and of the fourth D, and A < B < C < D. The initial priority of the first
task is set to four, of the second to three, of the third to two, and of the fourth to
one, thus reflecting the tasks’ BTs. The priority is then raised as the number of
remaining finite loop iterations decreases. The following pseudo code implements
the described mechanism:

26 EXERCISE 3. OTHER SCHEDULING ALGORITHMS

for predefined number of iterations, i.e., one of A, B, C, or D
turn LED belonging to this task on, others off
for each of the four keys

enter critical section
if the key is down and was up in the previous iteration

create new key corresponding task with priority reflecting its BT
save key position for the next iteration
exit critical section

if number of iterations left equals to any of 1, A+ 1, B + 1, or C + 1
increment priority

delete this task

Note that number of remaining iterations is decremented after the iteration is
completed. The task priority is gradually raised. The final priority before task
completion is five. Therefore, the configMAX_PRIORITIES option has to be at
least six.

RR scheduling algorithm

The RR scheduling algorithm assigns one time slice per task in circular manner.
Each task gets at most one time slice of CPU before the context switch takes
place. There is no priority. A newly arrived task request is added at the end of
the line of tasks. In FreeRTOS, the RR scheduling algorithm can be implemented
by prioritized preemptive scheduling with time slicing and all tasks having the
same idle priority. The idle priority allows the Idle task to participate, thus being
able to release system resources after task ending.

The RR scheduling algorithm is a preemptive algorithm. The convoy effect
and skipping requests due to a lack of system resources both increase with the
time slice length. For an infinitely long time slice, the RR converts into the FCFS
algorithm. The RR algorithm cannot cause the CPU starvation under any task
arriving scheme.

Since a preemption can occur at any place in the code, a section of code from
getting to saving the current key position for the next iteration is critical and
should be an atom. To obtain the RR version of the pseudo code of the Idle
task callback function, the FCFS version has to be equipped with critical section
markers:

turn all LEDs off
for each of the four keys

enter critical section
if the key is down and was up in the previous Idle task iteration

create new key corresponding task
save key position for the next Idle task iteration
exit critical section

The same goes for the pseudo code of the finite tasks:

27

for predefined number of iterations
turn LED belonging to this task on, others off
for each of the four keys

enter critical section
if the key is down and was up in the previous iteration

create new key corresponding task
save key position for the next iteration
exit critical section

delete this task

Exercise 4

Assembly language function

In the assembly language of the AT91SAM3X8E µC, write an external function
which performs an addition of two arbitrary long unsigned integers. The function
should receive four arguments. The first argument should be a pointer to the final
sum, i.e., the address where the function writes the result. The next two arguments
should be pointers to both summands. And the fourth argument should provide
the length of the integers in 32-bit words. The function should return the final
carry bit value. To test the function, write a program reading two 128-bit long
unsigned integers in a hexadecimal form from the stdin stream, and writing their
sum to the stdout stream. Use the UART peripheral device as the stdio1, and
an arbitrary serial terminal program as a console.

Explanation

Create a new empty project in the Eclipse working environment as explained
in Exercise 1. Connect the Arduino Due board to the host PC over the Olimex
ARM-USB-OCD-H interface as shown in Fig. 4.1. Configure the UART peripheral
device and the stdio in serial mode as explained in Appendix A.

PC

USB

USBUSB-ARM-OCD-H

JTAG Programming port

Arduino
Due

ATMEGA16U2

UART

AT91SAM3X8E

Figure 4.1: PC / Olimex ARM-USB-OCD-H / Arduino Due connection for Exer-
cise 4

Function description

As it can be understood from the exercise text, the function has the following
declaration:

1stdio ... Standard I/O

30 EXERCISE 4. ASSEMBLY LANGUAGE FUNCTION

uint32_t func(uint32_t *sum,
uint32_t *summand1,
uint32_t *summand2,
uint32_t length);2

It has to be declared as an extern function, since its definition will reside in a
separate assembly code file.

The function usage from the C code is demonstrated with the following lines.
The two 128-bit (= 4 × 32bit) summands pulNum1 and pulNum2 are added, the
result is written into pulSum, and the final carry bit is returned.

uint32_t pulNum1[4], pulNum2[4], pulSum[4], ulC;
...

ulC = func(pulSum, pulNum1, pulNum2, 4);

Both summands and the sum are the arrays of four 32-bit unsigned integers.
Each array represents a 128-bit number. The function adds the numbers from the
pulNum1 and pulNum2 arrays and writes the result into the pulSum array as shown
in Fig. 4.2. The length of the numbers is four times 32-bit, i.e., 128-bit.

pulNum1[3] pulNum1[2] pulNum1[1] pulNum1[0] pulNum1

pulNum2[3] pulNum2[2] pulNum2[1] pulNum2[0] pulNum2

pulSum[3] pulSum[2] pulSum[1] pulSum[0] pulSum

+

ulC

Figure 4.2: The addition of two 128-bit long unsigned integer numbers

Function implementation

The AT91SAM3X8E µC is based on the ARM Cortex-M3 processor [18]. The
processor has 16 32-bit core registers labeled from r0 to r15. There are 13 general-
purpose registers r0 to r12, an SP register r13, a link register r14, and a program
counter r15.

When writing a subroutine, i.e., an external function, in the AT91SAM3X8E
µC assembly language, the subroutine calling convention for the ARM architecture
[19] has to be taken into account. By following the convention, the assembly
subroutine can be transparently called from the C code as an external function.
A short summary of the convention for the purpose of this exercise follows:

• The r0 to r3 registers are used to pass the arguments into the subroutine,
and to pass the result value out. If there are more arguments, or the result
is larger, the stack will be used. The r0 to r3 registers do not need to be
restored before returning.

• The r4 to r11 registers can be freely used by the subroutine. They must be
restored before returning. Therefore, the used registers are usually pushed
into the stack on subroutine entry, and restored from it before returning.

• The r12 register is a scratch register and can be used for any purpose.

2uint32_t is a 32-bit unsigned integer type.

31

• The r13 register is the SP register and must not be used for any other
purpose. The stack operates in full-descending mode, i.e., the SP register
points to the last item on stack and the stack grows downwards to lower
memory addresses.

• The r14 register is the link register with the returning address. Note that
the link register must be stored, e.g., to stack, when a subsubroutine is
called.

According to the convention, the first argument, i.e., pointer to the sum, is
passed in the r0 register, the second and the third, i.e., pointers to both summands,
in r1 and r2, and the fourth, i.e., length, in r3. Stack is not used. Before returning,
the result, i.e., the final carry bit value, has to be stored into the r0 register to be
passed back.

The summands are added by parts, 32-bits at a time. The carry bit from
the previous iteration is added in each step. Obviously, the number of iterations
equals to the length argument. The final carry bit is stored into the r0 register
for returning. The registers used in the subroutine must be saved, i.e., pushed to
the stack, at the subroutine beginning, and restored, i.e., popped off the stack, at
the end. The pseudo code of the subroutine is as follows:

save working registers (push to the stack)
C = 0

iter : C, [r0] ← [r1] + [r2] + C
increment pointers r0, r1 and r2
decrement r3
if r3 is not zero

go to iter
r0 ← C
restore working registers (pop off the stack)
return

As the exercise requires, the subroutine has to be written in assembly language
in a separate assembly code file. In the empty project, the src/sum.S file is
prepared for that purpose. Since the subroutine represents an external function
to be used from the C code, it has to be visible outside the assembly file. Thus,
the .global assembler directive [20] is required. The assembly file structure is:

.thumb

.syntax unified

.global func

.text
func: ...

...
.end

The ARM Cortex-M3 processors implements the ARMv7-M Thumb instruc-
tion set [21] which is quite extensive. To code the function from this exercise, only
some basic variations of load and store, data-processing and branch instructions
are required. A few selected instructions can be found in Tab. 4.1. The triangular
brackets <> denote a required field, the square brackets [] denote address deref-
erencing, e.g., [rn] denotes a value stored at the memory location address in the
rn register, and the curly brackets {} denote an optional field.

32 EXERCISE 4. ASSEMBLY LANGUAGE FUNCTION

instruction operation
stmfd <rn>{!},<regs> regs → [rn]3

ldmfd <rn>{!},<regs> [rn] → regs3
mov{s} <rd>,#<const> const → rd4

mov{s} <rd>,<rm> rm → rd4

ldr <rd>,=<c32> c32 → rd5

ldr <rd>,[<rn>{,#+/-<imm>}] [rn±imm] → rd6

ldr <rd>,[<rn>,#+/-<imm>]! [rn±imm] → rd, rn±imm → rn6

ldr <rd>,[<rn>],#+/-<imm> [rn] → rd, rn±imm → rn6

ldr <rd>,[<rn>,<rm>{,<shift>}] [rn+shift(rm)] → rd7

str <rs>,[<rn>{,#+/-<imm>}] rs → [rn±imm]8

str <rs>,[<rn>,#+/-<imm>]! rs → [rn±imm], rn±imm → rn8

str <rs>,[<rn>],#+/-<imm> rs → [rn], rn±imm → rn8

str <rs>,[<rn>,<rm>{,<shift>}] rs → [rn+shift(rm)]9

cmp <rn>,#<const> rn−const10

cmp <rn>,<rm>{,<shift>} rn−shift(rm)11
cmn <rn>,#<const> rn+const10

cmn <rn>,<rm>{,<shift>} rn+shift(rm)11
add{s} {<rd>,}<rn>,#<const> rn+const → rd12 18

add{s} {<rd>,}<rn>,<rm>{,<shift>} rn+shift(rm) → rd13 18

adc{s} {<rd>,}<rn>,#<const> rn+const+C → rd14 18

adc{s} {<rd>,}<rn>,<rm>{,<shift>} rn+shift(rm)+C → rd15 18

sub{s} {<rd>,}<rn>,#<const> rn−const → rd16 18

sub{s} {<rd>,}<rn>,<rm>{,<shift>} rn−shift(rm) → rd17 18

b{cond} <label> label → r1519

rd, rs, rm, rn ... arbitrary core register, i.e., r0 to r1520

regs ... list of comma separated registers surrounded by {},
e.g., {r4,r5,r7}

! ... write the final address back to rn
s ... update the flags in the PSR21

const ... 32-bit constant, entire range not available22
c32 ... 32-bit constant
imm ... up to 12-bit offset added to or subtracted from the rn

register23 (default: imm = 0)
shift ... shift rule (default: shift = lsl #0):

lsl #<n> ... logical shift left n bits24
lsr #<n> ... logical shift right n bits24
asr #<n> ... arithmetic shift right n bits24
ror #<n> ... rotate right n bits24
rrx ... rotate right one bit with extend over

the carry flag
cond ... condition under which the instruction is executed:

al (always) → execute always (default),
eq (equal) → execute if Z = 1,
ne (not equal) → execute if Z = 0,
cs (carry set) → execute if C = 1,
cc (carry clear) → execute if C = 0, etc.

For complete list, see [21].

Table 4.1: Selected instructions from the ARMv7-M Thumb instruction set

33

Testing program in C

To test the assembly summing function, a few additional lines of C code are
needed. Write an auxiliary program preparing the two summands, calling the
function, and printing the result. Since the stdio is configured in serial mode,
the stdio functions (e.g. putchar(), getchar(), printf(), etc.) can be used for
reading form / writing to the UART device. An arbitrary serial terminal program
running on the host PC can serve as a console as described in Exercise 1. The
pseudo code of the auxiliary program is as follows:

while forever
obtain two 128-bit summands
call the assembly function to add them
print the result

A hint: Read each summand character by character from the stdin standard
stream using the getchar() function. Read eight characters at a time, i.e., a
32-bit number in a hexadecimal format. Use the strtoul() standard function to
convert the eight character string into a 32-bit unsigned integer. After addition,
use the %08lx format specifier of the printf() standard function to print a 32-bit

3Store (stm) / load (ldm) multiple registers, i.e., regs, to / from consecutive memory locations
in full descending mode starting at the address in the rn register.

4Load the const value / rm register into the rd register.
5Load the c32 value into the rd register. The same is achieved when the 32-bit constant is

labeled:
label: .long <c32>

...
ldr <rd>, label

For the .long assembler directive, see [20].
6Obtain the value from the memory location address in the rn register increased or decreased

by the imm offset value and load it into the rd register. The calculated address can be written
back to the rn register.

7Calculate the memory location address by adding the rn register and the rm register shifted
according to the shift rule. Load the value from the obtained address into the rd register.

8Store the rs register to the memory location address in the rn register increased or decreased
by the imm offset value. The calculated address can be written back to the rn register.

9Calculate the memory location address by adding the rn register and the rm register shifted
according to the shift rule. Store the rs register to the obtained address.

10Set the PSR flags according to the rn∓const term.
11Shift the rm register according to the shift rule and set the PSR flags according to the

rn∓shift(rm) term.
12Add the rn register and the const value, and load the result into the rd register.
13Shift the rm register according to the shift rule, add the rn register, and load the result

into the rd register.
14Add the rn register, the const value and the carry flag, and load the result into the rd

register.
15Shift the rm register according to the shift rule, add the rn register and the carry flag, and

load the result into the rd register.
16Subtract the const value from the rn register and load the result into the rd register.
17Shift the rm register according to the shift rule, subtract it from the rn register, and load

the result into the rd register.
18If the rd register is omitted, the result will be loaded into the rn register.
19Branch to the target, i.e., label, address by setting the program counter register, i.e., r15.
20Available registers that can be specified at a particular field depend on the instruction

encoding. In some cases the SP register, i.e., r13, or program counter register, i.e., r15, cannot
be specified, or a particular register combination is not possible, etc. See [21] for details.

21PSR ... Program Status Register
22The entire 32-bit range is not available. Available constant values depend on the instruction

encoding. See [21] for details.
23The offset value construction depends on the instruction encoding. See [21] for details.
24The range for n depends on the shift rule and the instruction encoding. Also all shift

rules are not always available. See [21] for details.

34 EXERCISE 4. ASSEMBLY LANGUAGE FUNCTION

unsigned integer in a hexadecimal format.

Exercise 5

MPU

Suppose that the PB27 pin, to which the Arduino Due on-board LED is connected,
is configured as an output GPIO pin initialized to zero1. Observe the following
section of the program code (include directives, hardware initialization code, etc.,
are omitted):

void prvRecursiveFunc(uint32_t ulDepth) {
if(ulDepth) prvRecursiveFunc(ulDepth - 1);

}

int main(void) {
static uint32_t ulVar;

...
prvRecursiveFunc(DEPTH);
if(ulVar != 0) pio_set(PIOB, PIO_PB27);
for(;;);

}

The initial value of the ulVar static variable is zero and should never change. The
on-board LED should stay off, the PB27 output pin should not be set.

Gradually increase the constant DEPTH and find out when the on-board
LED is turned on. Explain the phenomena. Observe the SP register during
the prvRecursiveFunc() function call. Configure the MPU2 to catch the stack
overflow events. Measure the approximate amount of stack, that a simple

printf("Hello World!");

function call needs.

Explanation

Create a new empty project in the Eclipse working environment as explained
in Exercise 1. Connect the Arduino Due board to the host PC over the Olimex
ARM-USB-OCD-H interface as shown in Fig. 4.1. Configure the UART peripheral
device and the stdio in serial mode, and the PB27 pin as an output GPIO pin as
explained in Appendix A.

Type the given code in, start with small DEPTH, e.g., DEPTH = 10. Compile,
upload and run the program. The on-board LED stays off, as expected regarding

1See Appendix A.
2MPU ... Memory Protection Unit

36 EXERCISE 5. MPU

the code. Increase the constant DEPTH and repeat the procedure. Observe that
for DEPTH large enough3, the LED turns on.

Program memory map

To understand why the condition ulVar != 0 becomes true when the constant
DEPTH is increased and consequently the on-board LED is turned on, the pro-
gram memory map has to be examined. The program memory map shows the
address space parts used to store the program code and data. It is defined
by the sam/utils/linker_scripts/sam3x/sam3x8/gcc/flash.ld linker script.
The ASF provided linker script (see Exercise 1) is slightly customized to accom-
modate the MPU port of the FreeRTOS. The program memory map for the
AT91SAM3X8E µC defined by the linker script from [13] is shown in Fig. 5.1.
With another linker script, a different memory map can be obtained.

0x00000000

0x00080000

512kB
Flash

0x000fffff

0x20070000

96kB
SRAM

0x20087fff

0xffffffff

exception table

FreeRTOS privileged functions

code & constants

FreeRTOS privileged data

initial global values

RAM functions

uninitialized global variables

stack

MPU controlled stacks

heap

16kB (privileged functions)

512B
(privileged
data)

4kB
(global data)

512B (RAM
functions)

& sstack

& estack
8kB (stack)

Figure 5.1: The program memory map defined by the linker script in [13]

The source code is compiled and linked into an output (elf) file that is up-
loaded into the on-chip Flash memory. At reset, the Reset_Handler() function
performs the SRAM4 initialization (see footnote25 in Exercise 1). Initial values

3This is true for the project files downloaded from [13]. With another linker script and/or
makefiles, different effects can be achieved.

4SRAM ... Static RAM

37

of the initialized global and static variables, FreeRTOS privileged data and RAM
functions5 included, are copied from Flash to RAM. The segment containing the
uninitialized global and static variables (in Fig. 5.1 marked as ‘uninitialized global
variables’) is cleared, thus setting the initial values of those variables to zero. The
Flash and SRAM addresses required to preform the SRAM initialization are de-
fined in the linker script. A symbol marking an individual address can be accessed
from C code by declaring it as an extern unsigned 32-bit integer variable, e.g.,
symbols _sstack and _estack from Fig. 5.1 can be accessed when declared as:

extern uint32_t _sstack, _estack;

The extern variable defined in the linker script is placed at the specified address.
The address can be obtained by the C language address operator &, e.g., &_sstack
equals to 0x20071200 (= 0x20070000 + 4kB + 512B), and &_estack equals to
0x20073200 (= &_sstack + 8kB).

The ulVar is an uninitialized static variable. It resides in the ‘uninitialized
global variables’ SRAM segment in Fig. 5.1. Its initial value is set to zero during
the SRAM initialization.

Stack overflow

Stack is a memory space in SRAM organized as a LIFO6 data structure (see Fig.
5.2). The AT91SAM3X8E µC uses a full-descending stack. That means that the
SP register points to the last stacked item, and the stack grows towards lower
addresses. The SP register is initialized to the stack bottom, i.e., &_estack,
and grows downwards, i.e., towards &_sstack. The stack is used to store local
variables. The µC state at function call, i.e., return address, register values, etc.,
is also pushed to stack.

SRAM SRAM SRAM

SP (top)

bottom

code:

function function
call f() return f()

tt

µC state
f() locals

Figure 5.2: Stack

When the prvRecursiveFunc() function is called, the µC state is pushed onto
the stack. There are no local variables, so no space is required on that account.
The prvRecursiveFunc() function recursively calls itself. The µC state is pushed
onto the stack again. The procedure is performed for DEPTH times. The stack
grows to its final size achieved at the last recursive call, and then shrinks back
as the recursion unfolds. The stack growing and shrinking can be monitored by
observing the SP register.

5A function marked as a RAM function is compiled to run from SRAM.
6LIFO ... Last In First Out

38 EXERCISE 5. MPU

The program works fine as long as the stack top, i.e., the SP register, stays
inside the stack segment boundaries7, i.e., inside the [&_sstack, &_estack] address
space interval, see Fig. 5.1). If the DEPTH constant is large enough, the stack will
grow beyond the &_sstack boundary and sooner or later will flood the segment
below, i.e., at a lower address. The phenomena is called stack overflow. If the
flood reaches the ‘uninitialized global variables’ segment, the ulVar variable may
become corrupted. The condition ulVar != 0 does not hold any more, and the
on-board LED is turned on. The error can be postponed to a larger DEPTH
parameter by increasing the stack segment size8.

Operation modes and SP registers

The AT91SAM3X8E µC is based on the ARM Cortex-M3 processor [18] having
two operation modes: thread mode and handler mode. The µC is in handler mode
when executing an interrupt or system exception handler, otherwise the µC is in
thread mode.

There are two privilege levels9 of code execution: privileged and unprivileged
level. In handler mode, the code always runs at privileged level. In thread mode,
the code can run at privileged or unprivileged level. The privilege level in thread
mode is defined by the thread mode privilege level bit in the CONTROL register
[8].

There are also two SP registers available, MSP10 and PSP11. In handler mode,
the MSP is always used. In thread mode, the MSP or PSP can be used. The SP
register used in thread mode is defined by the active SP bit in the CONTROL
register [8]. The SP register r13 (see Exercise 4) is a copy of the currently used
register, MSP or PSP.

CONTROL register

CONTROL

31 1 0

TMPLASP

TMPL ... thread mode privilege level (0 ... privileged, 1 ... unprivileged)
ASP ... active SP (0 ... MSP, 1 ... PSP)

At the reset, the µC starts in thread mode at privileged level using MSP.
The initial MSP register value, i.e., &_estack, is loaded from the first entry in the
exception table defined in the sam/utils/cmsis/sam3x/source/templates/gcc/
startup_sam3x.c file.

The msr instruction can be used to set the SP register value, PSP or MSP. Both
registers can also be set from the C code with the __set_PSP() and __set_MSP()
CMSIS function pair. The declarations are:

void __set_PSP(uint32_t topOfProcStack);
void __set_MSP(uint32_t topOfMainStack);

The following two C lines set PSP at three quarters, and MSP at the end of
the stack segment. Note how the address at three quarters, i.e., &_sstack +

7The stack segment size, i.e., the difference &_estack − &_sstack, is defined by the
__stack_size__ symbol. Its default value is defined in the linker script and is set to 0x2000
(= 8kB).

8Different value for the __stack_size__ linker symbol can be specified in the config.mk file
by defining the linker flag [3]:
LDFLAGS = -Wl,--defsym,__stack_size__=value

9Do not confuse privilege levels with FreeRTOS privileged functions and data.
10MSP ... Main SP
11PSP ... Process SP

39

3
4×(&_estack − &_sstack), is calculated to avoid the overflow during the calcu-
lation.

__set_PSP(3 * ((uint32_t)&_estack / 4) + (uint32_t)&_sstack / 4);
__set_MSP((uint32_t)&_estack);

Two stacks are obtained (see Fig. 5.3). The stack that is currently used is deter-
mined by the operation mode and ASP bit in the CONTROL register. The main
stack can overflow the process stack which can overflow the segment below.

& sstack

PSP

& sstack + 3
4 × (& estack− & sstack)

MSP

& estack

process stack

main stack

Figure 5.3: Stack

The msr instruction can also be used to set the CONTROL register. A CMSIS
wrapper function __set_CONTROL() is available to set the register from C code.
The declaration is:

void __set_CONTROL(uint32_t control);

CMSIS does not provide the CONTROL register bit masks. To run the thread
code at unprivileged level using the PSP, the CONTROL register must be set by
hand:

__set_CONTROL(0x00000003);

A privileged level is required to execute the msr instruction. The msr instruc-
tion must be followed by the instruction synchronization barrier explained in the
next section. However, one should be careful when modifying the active SP value
from a C function. The local variables may get lost, the return information surely
is.

Synchronization barriers

The code instructions are not executed strictly one after another in a modern

40 EXERCISE 5. MPU

processor. Speculative reads12, out-of-order executions13, buffered memory trans-
fers14, etc., take place due to the processor optimizations. The subsequent instruc-
tion may modify an already speculatively read memory location, or it can affect
an ongoing memory transfer by reconfiguring the MPU, etc. A barrier between
the previous and the next instruction is required in such cases. There are two
kinds of barriers: data synchronization barrier, and instruction synchronization
barrier.

The data synchronization barrier ensures that all memory transfers complete
before the next instruction starts with execution. It is set by the dsb instruction.
The dsb instruction can be accessed from the C code with the CMSIS __DSB()
function. Its declaration is:

void __DSB(void);

The instruction synchronization barrier ensures that all instructions complete
before the next instruction starts with execution. It is set by the isb instruction.
The isb instruction can be accessed from the C code with the CMSIS __ISB()
function. Its declaration is:

void __ISB(void);

As mentioned in the previous section, the __ISB() call is required after the
__set_PSP(), __set_MSP(), or __set_CONTROL() function call.

MPU

The AT91SAM3X8E µC includes a MPU that is capable of trigging a system
exception on a forbidden memory access [8, 18]. From the programmer’s point
of view, a system exception is equivalent to a regular interrupt. The regular
interrupt request is handled by the NVIC15 whereas the system exception request
is usually issued by a system unit like MPU. A system exception request does not
have a priority over the regular interrupt requests by default. The priority level
is configurable for the most of the system exceptions.

MPU setup

The MPU defines up to eight configurable address space regions with configurable
access rights, and a background region spreading over the entire 4GB address
space. The regions are numbered from 0 to 7, the background region number is
−1. When two or more regions overlap, e.g., any region always overlaps with the
background region, the region with the highest number defines the access rights,
e.g., the background region is always overruled. The MPU is disabled by default.
The regions and their access rights become relevant when the MPU is enabled.
If the background region access is granted, the access will be able only from the
privileged level code.

The configuration of the MPU registers has to be done partially by hand since
the CMSIS does not provide MPU manipulating functions. A brief summary of

12The processor reads the data or instruction, that may be needed in the future, beforehand.
13The processor does not wait idle during an execution of a costly several cycles long instruc-

tion. If the processor recognizes that the next instruction does not depend on the result of the
previous one, it will proceed with executing the next instruction. Thus, the next instruction can
complete before the previous one.

14Buffered memory transfer is a memory read or write that completes afterwards. In the mean
time the subsequent instruction(s) is(are) already executing.

15NVIC ... Nested Vector Interrupt Controller

41

the MPU registers16 follows.

MPU Control register

CTRL

31 2 1 0

PRIVDEFENA HFNMIENA ENABLE

ENABLE ... enable the MPU
HFNMIENA ... enable MPU during hard fault18 and NMI19 handler
PRIVDEFENA ... enable background region access, privileged level is required

MPU Region Base Address register

RBAR

31 5 4 3 0

ADDR VALID REGION

REGION ... region number
VALID ... region number valid (if zero, the settings refer to the current region)
ADDR ... region base address (has to be aligned to the region size)

MPU Region Attribute and Size register

RASR

31 28 26 24 21 19 18 17 16 15 8 5 1 0

XN AP TEX S C B SRD SIZE ENABLE

ENABLE ... enable the region
SIZE ... region size (= 2SIZE+1B ≥ 32B)
SRD ... subregion disable bits20
B ... bufferable bit21
C ... cacheable bit21
S ... shareable bit21
TEX ... type extension21

AP ... access permission
AP privileged unprivileged

0b000 no access no access
0b001 RW22 no access
0b010 RW RO
0b011 RW RW
0b101 RO no access
0b11x RO RO

XN ... no execution (disable instruction fetches)

Stack fence

The stack overflow will be intercepted by the MPU if a no-access region is placed
just before the stack boundary. If the code runs at unprivileged level and is using

16Only registers needed in this exercise are listed. For example, the RO17 TYPE register is
not listed. It contains an information about MPU regions and comes handy when writing a
code portable across various versions of Cortex based µCs with different MPUs. For detailed
explanation see [8].

17RO ... Read-Only
18A hard fault system exception occurs when an exception is requested inside the exception

handler, or in case of a request that cannot be regularly managed.
19NMI ... Non-Maskable Interrupt
20Regions greater than 128B are divided into eight equal subregions.
21The flags define caching policy and shareability, i.e., the ability of the region to be shared

by multiple processors. Since the AT91SAM3X8E µC has a singe processor and no cache, the
TEX, S, C and B flags should have the following values:

region in TEX S C B
Flash 0b000 0 1 0
SRAM 0b000 1 1 0
external SRAM* 0b000 1 1 1
pripherals 0b000 1 0 1

*not present on Arduino Due board
22RW ... Read-Write

42 EXERCISE 5. MPU

the PSP with stack configuration from Fig. 5.3, the stack will grow towards the
&_sstack boundary. A no-access region must be placed just before the stack
floods the segment below (see Fig. 5.4). The fence, i.e., no-access region, occupies
a part of the stack segment space, thus the maximum stack size is consequently
slightly smaller. Since the code is running at unprivileged level, the no-access
region is required for the unprivileged level only.

addresses
aligned

region size

& sstack

PSP

MSP

& estack

no-access region

process stack

main stack

Figure 5.4: Stack fence

To configure a no-access region for the unprivileged level near the &_sstack
address, the MPU registers must be properly set:

MPU->CTRL &= ~MPU_CTRL_ENABLE_Msk;
23

MPU->RBAR = ((((uint32_t)&_sstack) & align_mask) + region_size) |
MPU_RBAR_VALID_Msk | 1;24

MPU->RASR = 0x01060000 | size | MPU_RASR_ENABLE_Msk;25

First, the MPU is disabled for the configuration. The region base address and
region number are set in the RBAR. The &_sstack address is striped of the least
significant bits to get the first region size aligned address beneath the &_sstack
(the dashed line in Fig. 5.4). E.g.: for the smallest 32B region size, the align_mask
is 0xffffffe0, thus using all the ADDR bits in the RBAR; for the 64B region size,
the align_mask is 0xffffffc0, etc. The region base address is one region_size
above the obtained address. The region number is one. The access permissions
and other region attributes are set in the RASR. The 0x01060000 constant defines
a region in SRAM with no-access from the unprivileged code, i.e., XN = 0, AP
= 0b001, TEX = 0b000, S = 1, C = 1, B = 0. The region size is 2SIZE+1B, e.g.,
size = 0x00000008 for 32B, size = 0x0000000a for 64B, etc.

The background region access cannot be granted to the unprivileged code.
With one no-access region configured and others disabled, the entire address space

23MPU is a CMSIS defined address where the MPU registers start. It is type casted into a
pointer to a structure whose elements are 32-bit integers representing the MPU registers.
Mask MPU_CTRL_ENABLE_Msk enables the MPU.

24MPU_RBAR_VALID_Msk is a region number valid mask.
25Mask MPU_RASR_ENABLE_Msk enables the specified region.

43

becomes unaccessible from the unprivileged code. To enable the unprivileged
access outside the no-access region, a full-access region over the entire address
space is required. The no-access region will stay in power and will overrule the
full-access one if the full-access region number is smaller. The following lines
configure a full-access region, i.e., XN = 0, AP = 0b011, TEX = 0b000, S = 1, C
= 1, B = 1, over the entire address space, i.e., base address = 0x00000000, size
= 4GB. The region number is zero.

MPU->RBAR = MPU_RBAR_VALID_Msk;
MPU->RASR = 0x0307003e | MPU_RASR_ENABLE_Msk;

The unused regions have to be disabled. To disable the i th region, the RBAR
and RASR must be appropriately set:

MPU->RBAR = MPU_RBAR_VALID_Msk | i;
MPU->RASR = 0;

The MPU starts acting when enabled. Since the entire-space full-access region
is configured, enabling the background region access, i.e., setting the PRIVDE-
FENA bit in the CTRL register, is irrelevant.

MPU->CTRL = MPU_CTRL_ENABLE_Msk;

The MPU configuration modification may affect an ongoing memory transfer.
Or the new configuration may not be used immediately after the MPU setup be-
cause of a speculative read or out-of-order execution. To avoid the first issue, the
data synchronization barrier, i.e., __DSB(), is required before the MPU setup. Set-
ting the data and instruction synchronization barriers, i.e., __DSB() and __ISB(),
after the MPU setup eliminates the latter concern.

Memory management fault exception

An illegal memory access detected by the MPU causes the memory management
fault. When enabled, the MemManage_Handler() exception handler is carried out.
The memory management fault exception is enabled by setting the MEMFAULTENA
bit in the SHCSR26:

SCB->SHCSR |= SCB_SHCSR_MEMFAULTENA_Msk;27

The memory management fault exception has a configurable priority level29.
The default priority level obtained at µC reset can be modified by the CMSIS
NVIC_SetPriority() function30. The following NVIC_SetPriority() function
call sets the priority level of the memory management fault exception to the
lowest:

26SHCSR ... System Handler Control and State Register
27SCB is a CMSIS defined address where the SCB28 registers start. It is type casted into a

pointer to a structure whose elements are 32-bit integers representing the SCB registers.
Mask SCB_SHCSR_MEMFAULTENA_Msk enables the memory management fault exception.

28SCB ... System Control Block
29Do not confuse system exception and interrupt priority levels with FreeRTOS task priorities.
30Declared as void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority); where

IRQn_Type is an enumerated type with interrupt/exception identifiers, IRQn is the identifier,
and priority is a number from 0 (the highest) to 15 (the lowest priority).

44 EXERCISE 5. MPU

NVIC_SetPriority(MemoryManagement_IRQn, 15);31

Starting address of the MemManage_Handler() exception handler is defined
in the exception table in the sam/utils/cmsis/sam3x/source/templates/gcc/
startup_sam3x.c file. The handler is declared a as a weak symbol. A new
MemManage_Handler() function definition in the application code overrides the
weak declaration.

void MemManage_Handler(void) {
...

}

The reason for the memory management fault can be retrieved from the five
bits in CFSR32.

CFSR

31 7 4 3 1 0

other flags MMFARVALID MSTKERR MUSTKERR DACCVIOLIACCVIOL

IACCVIOL ... instruction access violation
DACCVIOL ... data access violation
MUSTKERR ... error on unstacking at exception return
MSTKERR ... error on stacking at exception entry
MMFARVALID ... the address in MMFAR33 is valid

CFSR bit masks are not provided by the CMSIS. An individual bit has to be
masked out by hand.

Suppose that the code runs in thread mode at unprivileged level using the PSP
register. The memory management fault happens because the stack enters the no-
access region. The cause of the fault is data access violation (DACCVIOL). The
memory management fault starts the MemManage_Handler() exception handler.
Before starting, the current µC state needs to be pushed onto the stack. The
operating mode, privilege level and current SP register are changed when the
exception handler is started, i.e. after storing the current µC state. In other words,
the stacking at exception entry is performed in the original mode, privilege level
and SP register (see Fig. 5.5). Since the stack is already in the no-access region,
the stacking at exception entry fails. Another memory management fault happens,
this time because of an error on stacking at exception entry (MSTKERR). The
address in the MMFAR is the address accessed at the first memory management
fault.

The two memory management faults cannot be separated when the access
violation is caused by pushing data onto the stack, although the exception handler
uses another stack, and no-access region does not apply at privileged level. A
memory management fault because of stack access is always followed by a memory
management fault because of an error on stacking at exception entry.

If for any reason a memory management fault occurs in the MemManage_Han
dler() exception handler, a hard fault will occur. Hard fault is a system exception
with a fixed priority of −1, higher than any configurable priority (from 0 to 15).
The HardFault_Handler() exception handler is started. It is again declared as a
weak symbol and can be overridden in the application code.

31The enumerated value MemoryManagement_IRQn represents the memory management fault
identifier.

32CFSR ... Configurable Fault Status Register, can be accessed from C code by SCB->CFSR.
33MMFAR ... Memory Management Fault Address Register contains the address whose access

attempt caused the memory management fault. The register can be accessed from C code by
SCB->MMFAR.

45

handler mode

thread mode

stacking at
exception
entry

DACCVIOL

MSTKERR

MemManage Handler()

SP = PSP SP = MSP

Figure 5.5: Stacking at exception entry

MPU configuration and memory management fault exception summary

The discussed stack fence is realized with proper configuration of the MPU re-
gions. According to the explanation in the previous sections, the pseudo code for
configuring the MPU is as follows:

enable memory fault exception
set memory fault exception priority
data barrier
disable MPU
configure MPU regions
enable MPU
set PSP and MSP
set unprivileged level and PSP as SP in thread mode
data barrier
instruction barrier

Note that by modifying the PSP and MSP registers, the current stack is lost.
Therefore, the operation must not be performed in a function since the return
address will be corrupted. Setting the PSP and MSP registers must be done
from the main() function which never returns. Also, there must not be any local
variables in the main() function since the PSP/MSP modification corrupts them
too.

When a memory management fault occurs, the MemManage_Handler() excep-
tion handler is started. Since the µC state was not stored, the handler cannot
properly return. Without an operating system, the memory management fault is
irrecoverable. For the purpose of this exercise, the MemManage_Handler() code
can print the cause of the fault and enter the endless loop. The pseudo code of
the handler is as follows:

print memory management fault information regarding the CFSR bits
while forever

do nothing

Measuring the amount of stack needed by a function call

To measure the amount of stack required by the printf("Hello World!");
function call, configure a relatively wide no-access region, i.e., stack fence, to
ensure intercepting the stack overflow. Set the current SP register and call the
printf() function. The stack size, i.e., the difference between the initial SP
register value and the edge of the stack fence, is large enough when the memory
management fault does not occur.

46 EXERCISE 5. MPU

To prevent stack overshooting, the no-access region has to be wide-enough.
It has to be wider than the amount of stack required at function entry. If the
no-access region is not wide enough, the SP register may be set beyond the fence
to accommodate local variables. Yet the stack is not touched. If a local variable
beyond the fence is used first, the undetected stack overflow will occur. The code
can become unpredictable. Luckily, if the damage is not sincere, the stack overflow
will be detected later when a variable inside the no-access region is used.

A hint: a printf("Hello World!"); function call requires less than 2kB
stack space.

Exercise 6

Stack management in FreeRTOS™

Write a FreeRTOS task that periodically prints the ‘Hello World!’ string to the
stdout stream using the printf() function. Use the UART peripheral device
as the stdio. Use FreeRTOS provided stack overflow detection mechanisms to
measure the stack size required by the task. Verify the measured size using the
FreeRTOS MPU port.

Explanation

Create a new empty project in the Eclipse working environment as explained
in Exercise 1. Connect the Arduino Due board to the host PC over the Olimex
ARM-USB-OCD-H interface as shown in Fig. 4.1. Configure the UART peripheral
device and the stdio in serial mode as explained in Appendix A.

Stack high water mark

The stack size of the task is specified at task creation (see Exercise 2). The
remaining stack space decreases when the stack grows, and increases when the
stack shrinks. The minimum remaining stack space during the task execution is
called the stack high water mark. It measures how close the task came to the
stack size limit. A sizable stack high watermark indicates that the stack is too
large, thus waisting the RAM, whereas a small stack high water mark warns about
stack overflow.

The uxTaskGetStackHighWaterMark() function1 [15] [16] can be used to ob-
tain the stack high water mark. The declaration of the function is:

UBaseType_t uxTaskGetStackHighWaterMark(TaskHandle_t xTask);

The function returns the minimum remaining stack space, i.e., the stack high
water mark2, in number of words. The argument of the function is:
xTask ... task handle

Passing NULL argument is equivalent to passing a handle of the calling task. For
instance, the following uxTaskGetStackHighWaterMark() function call returns
the stack high watermark of the calling task:

UBaseType_t uxMark = uxTaskGetStackHighWaterMark(NULL);

1The INCLUDE_uxTaskGetStackHighWaterMark option must be set to one in the src/FreeRTOS
Config.h configuration file to make the uxTaskGetStackHighWaterMark() function available.

2A predefined byte is loaded into the entire stack space at task creation. The high water
mark is a point in the stack space where the byte remained intact.

48 EXERCISE 6. STACK MANAGEMENT IN FREERTOS™

To use the uxTaskGetStackHighWaterMark() function, the FreeRTOS.h and
task.h header files have to be included.

#include <FreeRTOS.h>
#include <task.h>

Periodic task

FreeRTOS measures the time in number of time slices, i.e., ticks. A serial number
of the current tick can be obtained by the xTaskGetTickCount() function [15]
[16]. The declaration of the function is:

TickType_t xTaskGetTickCount(void);

The function returns the total number of ticks since the FreeRTOS was started.
To wait for a specified point in time, the vTaskDelayUntil() function3 [15]

[16] can be used. The declaration of the function is:

void vTaskDelayUntil(TickType_t *pxPreviousWakeTime,
TickType_t xTimeIncrement);4

The function places the calling task into the blocked state until the specified time,
i.e., *pxPreviousWakeTime + xTimeIncrement, is reached, and updates the initial
time to the specified time, i.e., *pxPreviousWakeTime = *pxPreviousWakeTime
+ xTimeIncrement. If the specified time is in the past5, the calling task will not
be placed into the blocked state, only the initial time is updated. Therefore, if the
task is denied the CPU time for some period of time, it will be able to compensate
the missed cycles afterwards. The function arguments are:
pxPreviousWakeTime ... pointer to initial time in the total number of

ticks since FreeRTOS start
xTimeIncrement ... time interval in number of ticks
A periodic task that executes at a predefined frequency rate can be imple-

mented in the following way:

void periodic(void *arg) {
TickType_t xLastWakeTime = xTaskGetTickCount();
for(;;) {

...
vTaskDelayUntil(&xLastWakeTime, pdMS_TO_TICKS(period_in_ms));

}
}

To obtain some information about the stack space required by the printf(
"Hello World"); function call, printing stack high water mark is useful. The
pseudo code of the periodic task is as follows:

3The INCLUDE_vTaskDelayUntil option must be set to one in the src/FreeRTOSConfig.h
configuration file to make the vTaskDelayUntil() function available.

4Do not confuse the vTaskDelayUntil() function with the vTaskDelay() function from Ex-
ercise 2. The vTaskDelayUntil() function waits until an absolute time is reached, whereas the
vTaskDelay() waits until an instant relative to when the function was called is reached.

5The tick count overflow error is avoided by verifying if the current tick count is inside the
initial and specified time in a circular manner.

49

get current tick
while forever

print ‘Hello World!’
obtain stack high water mark
print the mark
go to blocked state until specified time is reached

Do not use the printf() function to print the stack high water mark since it
may require even more stack space than the printf("Hello World"); call.
Therefore, the stack high water mark value would not be the consequence of the
‘Hello World!’ call anymore. Use the putchar() function instead.

Create the periodic task and start the FreeRTOS scheduler as explained in
Exercise 2.

FreeRTOS stack overflow detection mechanisms

The required task’s stack size can be estimated by the stack high water mark
value during the application development. However, FreeRTOS also provides two
run time stack overflow detection mechanisms [15] [16]. The first one checks the
SP value at every context switch. It assumes that if the stack overflow appears, it
will happen at the context switch since the additional stack for saving the task’s
state is needed at that moment. Therefore, the first detection mechanism misses
temporary stack overflows that happen during the task execution and are over
before the context switch.

The second mechanism additionally implements the stack high water mark
technique. A predefined byte is loaded into the entire stack space at task creation.
Beside checking the SP, the mechanism also checks if the bytes near the stack
boundary were overwritten. The checking procedure is again performed at every
context switch.

The first mechanism is selected when the configCHECK_FOR_STACK_OVERFLOW
option in the src/FreeRTOSConfig.h configuration file is set to one, and the sec-
ond when to two. When a stack overflow is detected, the vApplicationStackOver
flowHook() callback function will be called. The function has to be defined in
the application code as:

void vApplicationStackOverflowHook(TaskHandle_t *pxTask,
signed char *pcTaskName);

The received arguments are:
pxTask ... pointer to task that exceeded its stack
pcTaskName ... task name

When the vApplicationStackOverflowHook() callback function is called, the
stack overflow already took place, thus making an unrecoverable damage. Recover-
ing from the stack overflow is impossible. The vApplicationStackOverflowHook
() function serves primarily for debugging purposes and ends in an endless loop6.

6FreeRTOS kernel uses the system timer interrupt, i.e., the SysTick counter [8]. The
priority level of the SysTick interrupt is set by the configKERNEL_INTERRUPT_PRIORITY op-
tion in the src/FreeRTOSConfig.h configuration file and should be the lowest possible. In-
terrupts that use the FreeRTOS API functions must have priority levels equal or below the
configMAX_SYSCALL_INTERRUPT_PRIORITY option. The configKERNEL_INTERRUPT_PRIORITY level
must never be configured above configMAX_SYSCALL_INTERRUPT_PRIORITY.

The taskDISABLE_INTERRUPTS() macro call disables the interrupts that have priority levels
equal or below the configMAX_SYSCALL_INTERRUPT_PRIORITY option. In other words, if the rule
above is applied, the macro will stop all the code directly related to the FreeRTOS. Therefore,
the macro call is usually the first line of the vApplicationStackOverflowHook() function.

Do not confuse interrupt priority levels with FreeRTOS task priorities.

50 EXERCISE 6. STACK MANAGEMENT IN FREERTOS™

Since it cannot detect temporary overflows, the first detection mechanism can-
not be used for measuring the printf("Hello World"); stack requirements.
The second mechanism, on the other hand, provides similar service as the stack
high water mark measurement.

Stack overshoot

A stack overshoot appears when the required amount of stack at function entry
is larger than the entire stack space. In that case, the SP register is immediately
shifted outside the stack space. If the function returns before the context switch,
and if, for any reason, only a memory near the SP is used, whereas the larger part
of the required space is left untouched, the stack overflow will pass undetected.
The SP is back inside the stack space and the part of the stack space monitored by
the detection mechanism is intact. A stack overflow was caused because of stack
overshooting. Under certain circumstances, the printf("Hello World"); call
can cause a stack overshoot.

MPU restricted task

To detect stack overshooting with greater certainty, the MPU should be used. In-
stead of xTaskCreate() (see Exercise 2), the xTaskCreateRestricted() function
has to be used to create an MPU restricted task [16]. The function declaration is:

BaseType_t xTaskCreateRestricted(
TaskParameters_t *pxTaskDefinition,
TaskHandle_t *pxCreatedTask);

The function returns the pdPASS value on success. The function will fail if there
is not enough heap memory available for allocating the task’s stack and TCB. A
newly created task is placed into the ready state. The function arguments are:
pxTaskDefinition ... pointer to a structure with task definition
pxCreatedTask ... pointer to where a handle to the created task is

returned; if NULL, the handle is not returned
The TaskParameters_t structure is defined as:

typedef struct {
TaskFunction_t pvTaskCode;
char *pcName;
uint16_t usStackDepth;
void *pvParameters;
UBaseType_t uxPriority;
StackType_t *puxStackBuffer;
MemoryRegion_t xRegions[portNUM_CONFIGURABLE_REGIONS];

} TaskParameters_t;7

The elements of the structure are8:

7uint16_t is a 16-bit unsigned integer type.
StackType_t is a 32-bit unsigned integer type.
portNUM_CONFIGURABLE_REGIONS is three for ARM Cortex-M3 based processors.

8Most of the elements are the same as the arguments of the xTaskCreate() function (see
Exercise 2).

51

pvTaskCode ... pointer to task function
pcName ... task name
usStackDepth ... task’s stack size in words
pvParameters ... pointer passed to the task as an argument
uxPriority ... task priority9

puxStackBuffer ... pointer to task’s stack region
xRegions ... array of additional MPU regions

The puxStackBuffer pointer defines starting address of the task’s stack. Since
stack of an MPU restricted task is MPU controlled, it has to be an individual
MPU region. That means, that its size must be a power of two, and its starting
address must be region size aligned (see Exercise 5). In C programming language,
a stack space that meet the above requirements can be declared as an aligned
global array placed into the ‘MPU controlled stacks’ SRAM segment (see Fig.
5.1):

StackType_t stack[size]
__attribute__((aligned(sizeof(StackType_t) * size)))
__attribute__((section(".mpu_stacks")));

The xRegions array defines task specific MPU regions10 that are reconfigured at
context switch. Each region is described by the MemoryRegion_t structure defined
as:

typedef struct {
void *pvBaseAddress;
unsigned long ulLengthInBytes;
unsigned long ulParameters;

} MemoryRegion_t;

The elements of the structure are:
pvBaseAddress ... region starting address
ulLengthInBytes ... region length in bytes
ulParameters ... region access permission
For instance, an MPU restricted task with 512 bytes of stack and RW access

to the global data in SRAM (see Fig. 5.1) is created with the following code:

extern uint32_t __SRAM_segment_start__[];
extern uint32_t _Globals_Region_Size[];
StackType_t pxStack[128] __attribute__((aligned(512)))

__attribute__((section(".mpu_stacks")));

9Tasks execute their code at an unprivileged level (see Exercise 5) by default. A task cre-
ated by the xTaskCreateRestricted() function can be elevated to the privileged level of code
execution by setting the portPRIVILEGE_BIT bit in the uxPriority element, e.g., uxPriority =
portPRIVILEGE_BIT|2 defines a task running at privileged level with priority two.

10By default, the MPU enables RO access to Flash memory, RW access to peripherals [8], and
RW access to FreeRTOS privileged data in SRAM. The privilege level of execution is required to
access the FreeRTOS privileged functions in Flash and privileged data in SRAM (see Fig. 5.1).
The background region access is enabled. The default MPU settings do not change at context
switch.

Besides the default MPU settings, a task has its own task specific MPU regions. To an ordinary
task, RW access to the entire SRAM is granted. On the other hand, to an MPU restricted task,
RW access only to its stack region is granted. To enable an MPU restricted task to access
addresses outside the stack region, additional MPU regions may be specified in the xRegions
array. The task specific MPU regions are reconfigured at context switch.

52 EXERCISE 6. STACK MANAGEMENT IN FREERTOS™

TaskParameters_t xDef = {tsk, "Task", 128, NULL, 1, pxStack,
{{__SRAM_segment_start__,
(uint32_t)_Globals_Region_Size,
portMPU_REGION_READ_WRITE11},
{0, 0, 0},
{0, 0, 0}}};12

...
xTaskCreateRestricted(&xDef, NULL);

The task is coded in the tsk() function, its name is "Task", has priority one,
and runs at unprivileged level. The NULL pointer is passed as an argument and no
task handle is returned. One additional MPU region enabling RW access to the
global data space located at the start of the SRAM is specified for the task. For
that purpose, the __SRAM_segment_start__ and _Globals_Region_Size sym-
bols defined in the sam/utils/linker_scripts/sam3x/sam3x8/gcc/flash.ld
linker script are declared as extern sysmbols.

When an MPU restricted task attempts to access an illegal memory address,
the MPU raises the memory management fault. The MemManage_Handler() ex-
ception handler is called. The handler is enabled and configured during the FreeR-
TOS start. Therefore, only a new definition of the MemManage_Handler() function
is required in the application code (see Exercise 5).

Create the MPU restricted periodic task and start the FreeRTOS scheduler as
explained in Exercise 2.

Suggested stack experiments

The exercise can be performed in many different ways. The course of action
suggested here tries to highlight all the described techniques:

• Write a periodic ‘Hello World!’ task. Add stack high water mark printing.
When creating the task, make sure the stack is large enough.

• Measure the required stack size by observing the stack high water mark
while gradually decrease the size.

• Set the stack size slightly below the required size and test the first and the
second FreeRTOS stack overflow detection mechanism.

• Set the stack size far below the required size and test the first and the second
FreeRTOS stack overflow detection mechanism again.

• Create the task as an MPU restricted task. Test stack overflow error with
various stack sizes.

11The portMPU_REGION_READ_WRITE access permission mask defines RW access for privileged
and unprivileged level.

12Note that the main() function stack is reused after the vTaskStartScheduler() function is
called. Therefore, the TaskParameters_t structure, i.e., xDef, must be global. If the structure
is local, it will become corrupted after the vTaskStartScheduler() call. This must not happen
since the xTaskCreateRestricted() function does not make copies of the structure elements.

Exercise 7

Heap management in FreeRTOS™

Measure memory overhead per allocation and minimum allocation block size for
FreeRTOS provided heap structure.

Write a FreeRTOS task that all the time allocates and releases memory blocks
on the heap. The allocations should have random sizes and should be released in
a random order. The number of currently allocated memory blocks should stay
constant. The task should also measure the amount of time needed to perform an
allocation, and the amount of time needed to perform a release. Use FreeRTOS
provided best and first fit memory allocation algorithms. To monitor the heap
status, write another FreeRTOS task that periodically reports the current and
maximum allocation and release time, current number of free bytes on the heap,
current fragmentation rate of the heap, and current and the smallest size of the
free block at the top of the heap. Write a complementary code and modify the
existing FreeRTOS code to obtain the fragmentation rate and the top of the heap
free block size.

Explanation

Create a new empty project in the Eclipse working environment as explained
in Exercise 1. Connect the Arduino Due board to the host PC over the Olimex
ARM-USB-OCD-H interface as shown in Fig. 4.1. Configure the UART peripheral
device and the stdio in serial mode, and the TC1 device as a free running counter
as explained in Appendix A.

Memory allocation algorithms

A heap is declared as a global array in the src/main.c source file [13].
The total size of the heap is set by the configTOTAL_HEAP_SIZE option in
the src/FreeRTOSConfig.h configuration file. Because the heap’s declara-
tion aligns the array in order the MPU can be used (see Exercise 5), the
configTOTAL_HEAP_SIZE option has to be a power of two. Without the align-
ment, any size is acceptable.

The FreeRTOS provides several memory allocation algorithms to reserve the
memory on the heap. Two of them, the best fit algorithm, and the first fit algo-
rithm are considered in this exercise.

In the best fit algorithm, the free memory blocks are ordered from the smallest
to the largest. The best fit algorithm searches for the first, i.e., the smallest
free block that can fit the required size. The block found is therefore equal or
larger than the required size. If the block is larger than the required size, it will

1TC ... Timer Counter

54 EXERCISE 7. HEAP MANAGEMENT IN FREERTOS™

be divided into two blocks thus leaving the surplus memory free. Two adjacent
memory blocks are not merged when released. This makes the best fit algorithm
more fragmentation prone. The best fit algorithm is shown in Fig. 7.1.

h
ea
p
si
ze

a) b) c) d)

Figure 7.1: Best fit algorithm (dashed arrows denote free memory block order)
a) four memory blocks are allocated
b) the first, the second and the fourth block are released; adjacent

blocks are not merged
c) a large block is allocated; although the first and the second block

combined are large enough, a new block is formed
d) a block smaller than the first one is allocated; the first block is

divided

In the first fit algorithm, the free memory blocks are address ordered. The first
fit algorithm searches for the first memory block that can fit the required size.
The block found is therefore equal or larger than the required size. If the block
is larger than the required size, it will be divided into two blocks thus leaving the
surplus memory free. Since the blocks are address ordered, the adjacent memory
blocks are easily merged when released. This makes the first fit algorithm less
fragmentation prone. The first fit algorithm is shown in Fig. 7.2.

The best fit and the first fit memory allocation algorithms are implemented
in the heap_2.c and heap_4.c source files, respectively. Both reside in the
thirdparty/FreeRTOS/Source/portable/MemMang subdirectory. The implemen-
tation file of the algorithm that is to be used has to be renamed into heap.c. The
first fit algorithm is used by default.

Allocating and releasing a memory block on the heap

The well-known malloc() and free() standard C functions are not available by
default. The memory allocation API is in many cases not provided on embed-
ded systems. However, the FreeRTOS provides its own versions the malloc()
and free() functions called pvPortMalloc() and vPortFree() [15] [16]. The
declaration of the pvPortMalloc() function is:

55

h
ea
p
si
ze

a) b) c) d)

Figure 7.2: First fit algorithm (dashed arrows denote free memory block order)
a) four memory blocks are allocated
b) the first, the second and the fourth block are released; adjacent

blocks are merged
c) a new block is allocated; the first block is large enough and is

divided
d) another new block is allocated; since it does not fit into the

remainder, a new block is formed

void *pvPortMalloc(size_t xSize);2

The function returns a pointer to the allocated memory block. If there is not
enough heap memory available, the allocation will fail and NULL pointer will be
returned. The argument of the function is:
xSize ... memory block size in bytes

The following pvPortMalloc() function call allocates 1kB memory block on heap:

void *pvBlock = pvPortMalloc(1024);

When a FreeRTOS provided memory allocation scheme is used, the vApplica
tionMallocFailedHook() callback function will be called on pvPortMalloc()
failure if the configUSE_MALLOC_FAILED_HOOK option is set to one in the
src/FreeRTOSConfig.h configuration file. The function has to be defined in the
application code as:

void vApplicationMallocFailedHook(void);

An allocated memory block is released by the vPortFree() function. The
declaration of the function is:

void vPortFree(void *pv);

The argument of the function is:

2size_t is defined in stddef.h as a long (32-bit) unsigned integer type.

56 EXERCISE 7. HEAP MANAGEMENT IN FREERTOS™

pv ... pointer to memory block to be released
The following vPortFree() function call releases a memory block at pvBlock
address:

vPortFree(pvBlock);

Free heap size

A current sum of free memory block sizes is obtained by the xPortGetFreeHeap
Size() function [15]. Its declaration is:

size_t xPortGetFreeHeapSize(void);

For instance, the following xPortGetFreeHeapSize() function call returns a num-
ber of free bytes on the heap at the moment of call:

size_t xBytes = xPortGetFreeHeapSize();

The information about the free heap size is useful during the application develop-
ment to estimate the application required heap size.

Allocation overhead and minimum block size

Each allocated memory block on the heap carries some information about itself.
Therefore, it is slightly larger than the required size. The additional space is
allocation overhead (over). Besides overhead, the allocated memory block size
(alloc) is a multiple of the minimum block size (min). Therefore, it is always
greater or, in best case, equal to the required size (req) (7.1)3.

alloc = req + (min− req%min)%min+ over (7.1)

The allocation overhead and the minimum block size can be deduced from a series
of allocation requests with subsequent required sizes. The pseudo code is:

initialize the heap4

obtain initial free heap size
for req ∈ [1, n]5

allocate memory block of req size
print required size = req, and

allocated size = initial free heap size − current free heap size
release memory block

Allocation algorithm testing task

The testing task randomly allocates and releases memory on the heap. A set
of random sized allocations is created at the beginning. In every iteration of an
endless loop, a random allocation from the set is released, and a new random sized
allocation is added to the set. A pseudo code of the task is:

3% stands for modulo operation that finds the reminder of integer division.
4The heap initialization burns some bytes on the heap. It is preformed at the first

pvPortMalloc() function call. Therefore, dummy pvPortMalloc() and vPortFree() calls do
the trick.

5n is an integer large enough to obtain the allocation sizes pattern.

57

for number of allocations
allocate random size block

while forever
enter critical section
start time measurement
release random allocation
stop time measurement
exit critical section
calculate release time and save it into release global variable
if the release time is the longest so far

save it into release_max global variable
enter critical section
start time measurement
allocate random size block
stop time measurement
exit critical section
calculate allocation time and save it into allocate global variable
if the allocation time is the longest so far

save it into allocate_max global variable

The rand() standard C function returns a random integer value between zero and
RAND_MAX macro6. It can be used for random number generation in the algorithm
above.

The release and allocation time measurements must not be interrupted. There-
fore, they are made atoms (see Exercise 3). See Appendix A for time measurement
implementation.

Fragmentation rate and top of the heap free block

There is no universal definition of the heap fragmentation rate. For the purpose
of this exercise, the definition

fragmentation rate =
free heap size−max free block size

free heap size
100%

is used to express the fragmentation rate in percentage.
To find out, how close to heap allocation failure did an application come dur-

ing the execution, memory allocations on currently largest free block should be
monitored. This would provide a similar information about the required heap
size as the high water mark did about the stack size (see Exercise 6). Although
such a measurement is completely feasible, it would require quite some additional
overhead. With presumption that the block at the top of the heap is also the
largest free block at all times7, the measurement is significantly simplified. The
superfluous portion of the heap equals to the smallest size of the top block during
the application run. A sizable smallest top block indicates that the heap is too
large, thus wasting RAM, whereas a tiny smallest top block warns about eventual
allocation failure. For FreeRTOS provided best and first fit algorithms, the top
block is, with presumption fulfilled, always the last one.

To obtain fragmentation rate and the smallest top block size, three additional
memory management API functions are required. For the best fit allocation algo-
rithm, the following code has to be inserted into the thirdparty/FreeRTOS/Sour
ce/portable/MemMang/heap.c source file8:

6The RAND_MAX constant equals to 2147483647.
7The byte at the top of the heap is therefore never allocated.
8Lines to be inserted are marked with ins:.

58 EXERCISE 7. HEAP MANAGEMENT IN FREERTOS™

static size_t xFreeBytesRemaining = configADJUSTED_HEAP_SIZE;
ins: static size_t xMinLastFreeBlockSize = configADJUSTED_HEAP_SIZE;

...
void *pvPortMalloc(size_t xWantedSize) {

...
if(pxBlock != &xEnd) {

ins: size_t lastSize
...

xFreeBytesRemaining -= pxBlock->xBlockSize;
ins: lastSize = xPortGetLastFreeBlockSize();
ins: if(lastSize < xMinLastFreeBlockSize)
ins: xMinLastFreeBlockSize = lastSize;

}
...

}
...

ins: size_t xPortGetMaxFreeBlockSize(void) {
ins: return xPortGetLastFreeBlockSize();
ins: }
ins: size_t xPortGetLastFreeBlockSize(void) {
ins: BlockLink_t *pxBlock;
ins: size_t lastSize = 0;
ins: for(pxBlock = xStart.pxNextFreeBlock; pxBlock != &xEnd;
ins: pxBlock = pxBlock->pxNextFreeBlock)
ins: lastSize = pxBlock->xBlockSize;
ins: return lastSize;
ins: }
ins: size_t xPortGetMinLastFreeBlockSize(void) {
ins: return xMinLastFreeBlockSize;
ins: }

For the first fit algorithm, the code to be inserted is slightly different:

static size_t xMinimumEverFreeBytesRemaining = 0U;
ins: static size_t xMinLastFreeBlockSize = 0U;

...
void *pvPortMalloc(size_t xWantedSize) {

...
if(pxBlock != pxEnd) {

ins: size_t lastSize
...

xFreeBytesRemaining -= pxBlock->xBlockSize;
ins: lastSize = xPortGetLastFreeBlockSize();
ins: if(lastSize < xMinLastFreeBlockSize)
ins: xMinLastFreeBlockSize = lastSize;

...
}

...
}

...
ins: size_t xPortGetMaxFreeBlockSize(void) {
ins: BlockLink_t *pxBlock;
ins: size_t maxSize = 0;
ins: for(pxBlock = xStart.pxNextFreeBlock; pxBlock != pxEnd;

59

ins: pxBlock = pxBlock->pxNextFreeBlock)
ins: if(pxBlock->xBlockSize > maxSize)
ins: maxSize = pxBlock->xBlockSize;
ins: return maxSize;
ins: }
ins: size_t xPortGetLastFreeBlockSize(void) {
ins: BlockLink_t *pxBlock;
ins: size_t lastSize = 0;
ins: for(pxBlock = xStart.pxNextFreeBlock; pxBlock != pxEnd;
ins: pxBlock = pxBlock->pxNextFreeBlock)
ins: lastSize = pxBlock->xBlockSize;
ins: return lastSize;
ins: }
ins: size_t xPortGetMinLastFreeBlockSize(void) {
ins: return xMinLastFreeBlockSize;
ins: }

...
static void prvHeapInit(void) {

...
xFreeBytesRemaining = pxFirstFreeBlock->xBlockSize;

ins: xMinLastFreeBlockSize = pxFirstFreeBlock->xBlockSize;
...

}

The functions xPortGetMaxFreeBlockSize(), xPortGetLastFreeBlockSize(),
and xPortGetMinLastFreeBlockSize() return the sizes of the currently largest
free block9, of the last free block10, and of the smallest last free block10 during
the application execution, respectively.

The functions have to be declared throughout the various FreeRTOS source
files. The following lines have to be inserted into the specified files:

in thirdparty/FreeRTOS/Source/include/mpu_prototypes.h :
size_t MPU_xPortGetMaxFreeBlockSize(void);
size_t MPU_xPortGetLastFreeBlockSize(void);
size_t MPU_xPortGetMinLastFreeBlockSize(void);

in thirdparty/FreeRTOS/Source/include/mpu_wrappers.h :
#define xPortGetMaxFreeBlockSize \

MPU_xPortGetMaxFreeBlockSize
#define xPortGetLastFreeBlockSize \

MPU_xPortGetLastFreeBlockSize
#define xPortGetMinLastFreeBlockSize \

MPU_xPortGetMinLastFreeBlockSize

in thirdparty/FreeRTOS/Source/include/portable.h :
size_t xPortGetMaxFreeBlockSize(void) PRIVILEGED_FUNCTION;
size_t xPortGetLastFreeBlockSize(void) PRIVILEGED_FUNCTION;
size_t xPortGetMinLastFreeBlockSize(void) PRIVILEGED_FUNCTION;

9For the best fit algorithm, the xPortGetMaxFreeBlockSize() function is just a wrapper to
the xPortGetLastFreeBlockSize() function since the last free block is also the largest.

10If the byte at the top of the heap is never allocated, the last block in the chain of free blocks
will be at the top of the heap.

60 EXERCISE 7. HEAP MANAGEMENT IN FREERTOS™

in thirdparty/FreeRTOS/Source/portable/Common/mpu_wrappers.c :
size_t MPU_xPortGetMaxFreeBlockSize(void) {

BaseType_t xRunningPrivileged = xPortRaisePrivilege();
size_t xReturn = xPortGetMaxFreeBlockSize();
vPortResetPrivilege(xRunningPrivileged);
return xReturn;

}
size_t MPU_xPortGetLastFreeBlockSize(void) {

BaseType_t xRunningPrivileged = xPortRaisePrivilege();
size_t xReturn = xPortGetLastFreeBlockSize();
vPortResetPrivilege(xRunningPrivileged);
return xReturn;

}
size_t MPU_xPortGetMinLastFreeBlockSize(void) {

BaseType_t xRunningPrivileged = xPortRaisePrivilege();
size_t xReturn = xPortGetMinLastFreeBlockSize();
vPortResetPrivilege(xRunningPrivileged);
return xReturn;

}

Monitoring task

The monitoring task is a periodic task (see Exercise 6) continuously reporting the
current status of the heap. The task wakes up on regular time intervals, obtain
and print the requested heap parameters, and goes back into blocked state until
the next time period. The priority of the monitoring task must be above the
allocation algorithm testing task, so that the monitoring task can preempt the
testing task. With heap information acquiring functions available, the monitoring
task is straightforward. The pseudo code of the task is as follows:

get current tick
while forever

print current and maximum allocation time
(i.e., allocate and allocate_max global variables11)

print current and maximum release time
(i.e., release and release_max global variables11)

obtain and print number of free bytes on the heap
obtain size of the largest free block
calculate and print fragmentation rate
obtain and print size of the last free block (i.e., top of the heap block)
obtain and print the smallest size of the last free block
go to blocked state until specified time is reached

Create the allocation algorithm testing task, the monitoring task, and start
the FreeRTOS scheduler as explained in Exercise 2. Do not forget to assign an
appropriate stack size to the monitoring task in case printing is performed with
the printf() function (see Exercise 5).

11To be on the safe side, the global variables allocate, allocate_max, release and release_max
have to be declared as volatile. Otherwise, the compiler’s code optimization procedure could
resolve that the variables are not modified anywhere in the monitoring task function, and are
therefore constant. If so, they can be read only once, e.g., at function entry. By making them
volatile, the compiler is informed that their values can be modified elsewhere, so they are read
at every usage.

Exercise 8

Deadlocks

Create an application able to simulate events like starting or stopping a specified
task, and taking or giving a specified semaphore. Task starting and stopping
events should be given in a predefined scenario defining start and stop time points
of the tasks involved. A semaphore should be taken or given by pressing the
corresponding button key on the external board. Use the external board LEDs to
indicate which task is running. Report the semaphore events to the stdio. Produce
different sequences of events leading to various deadlocks.

Explanation

Create a new empty project in the Eclipse working environment as explained in
Exercise 1. Connect the Arduino Due board to the host PC over the Olimex
ARM-USB-OCD-H interface, and to the external board button keys and LEDs,
as shown in Fig. 2.1. Configure the UART peripheral device and the stdio in
serial mode. Configure the key and LED pins as input and output GPIO pins.
The pull-up resistors are required on input pins, i.e., keys. To properly detect the
key pressing, the debouncing filters are also needed. See Appendix A for UART
and GPIO pin configuration and usage.

Application organization

The application can be coded in different ways. The realization described here is of
course not the only one possible. The proposed application organization is shown
in Fig. 8.1. A master FreeRTOS task starts and stops other tasks following the
predefined scenario. The master task also monitors the external board button keys
and sends key events to a key queue. When the currently running task receives a
key event, it will perform a corresponding semaphore action. A message about the
action is sent to an UART queue. The tasks also alternatively drive the external
board LEDs to indicate which one is currently running. When the master task
receives the message from the UART queue, it will dispatch the message further
to stdio to report a semaphore event to the user. If there are no tasks running,
the Idle task will turn all the LEDs off.

Queue

Queue is a FIFO buffer providing a communication mechanism. A queue is created
by the xQueueCreate() function1 [15] [16]. The declaration of the function is:

1The configSUPPORT_DYNAMIC_ALLOCATION option must not be set to zero in the src/FreeRTOS
Config.h configuration file to make the xQueueCreate() and xSemaphoreCreateBinary() func-
tions available.

62 EXERCISE 8. DEADLOCKS

st
a
rt

/
st
op

keys UART

master

key event

key
queue

UART
queue

task task task task

semaphore
action

LEDs Idle

Figure 8.1: Application organization

QueueHandle_t xQueueCreate(UBaseType_t uxQueueLength,
UBaseType_t uxItemSize);2

The function returns a handle to the created queue on success. The function will
return NULL if there is not enough heap memory available to allocate the queue
buffer. The function arguments are:
uxQueueLength ... buffer space in number of items
uxItemSize ... one item size in bytes

For instance, the following xQueueCreate() function call creates a queue that is
five unsigned 32-bit integers long:

QueueHandle_t xBuf = xQueueCreate(5, sizeof(uint32_t));

An item is written or sent to a queue by the xQueueSend() function [15] [16].
The declaration of the function is:

BaseType_t xQueueSend(QueueHandle_t xQueue,
void *pvItemToQueue,
TickType_t xTicksToWait);

The function returns the pdPASS value on success. The function will fail if the
queue buffer is full and the item cannot be sent. The function arguments are:
xQueue ... queue handle
pvItemToQueue ... pointer to item to be sent
xTicksToWait ... maximum number of ticks to wait3

For instance, the following xQueueSend() function call sends an unsigned 32-bit
integer to the xBuf queue, and returns immediately:

xQueueSend(xBuf, &ulNum, 0);

2QueueHandle_t is a void pointer type.
3If the queue is full, the item cannot be sent to it. The calling task is placed into blocked

state and waits there for a queue space to become available for up to xTicksToWait ticks. If the
xTicksToWait argument is set to portMAX_DELAY, the task is suspended for an indefinite time,
until a queue space is available. In this case, the INCLUDE_vTaskSuspend option has to be set to
one in the src/FreeRTOSConfig.h configuration file.

63

The ulNum variable is an unsigned 32-bit integer declared as uint32_t ulNum;.
An item is read or received from a queue by the xQueueReceive() function

[15] [16]. The declaration of the function is:

BaseType_t xQueueReceive(QueueHandle_t xQueue,
void *pvBuffer,
TickType_t xTicksToWait);

The function returns the pdPASS value on success. The function will fail if the
queue buffer is empty and the item cannot be received. The function arguments
are:
xQueue ... queue handle
pvBuffer ... pointer to where received item is written
xTicksToWait ... maximum number of ticks to wait4

For instance, the following xQueueReceive() function call receives an unsigned
32-bit integer from the xBuf queue, and returns immediately:

xQueueReceive(xBuf, &ulNum, 0);

The ulNum variable is an unsigned 32-bit integer declared as uint32_t ulNum;.
To use the xQueueCreate(), xQueueSend() and xQueueReceive() functions,

the FreeRTOS.h and queue.h header files have to be included.

#include <FreeRTOS.h>
#include <queue.h>

Binary semaphore

Binary semaphore is a variable used for synchronization. A binary semaphore
can be taken (locked), or given (unlocked). A task taking a semaphore, al-
ready taken by another task, must wait until the semaphore is given back,
thus synchronizing with the other task. A binary semaphore is created by the
xSemaphoreCreateBinary() function1 [15] [16]. The declaration of the function
is:

SemaphoreHandle_t xSemaphoreCreateBinary(void);5

The function returns a handle to the created binary semaphore on success. The
semaphore is created in a taken (locked) state. The function will return NULL if
there is not enough heap memory available to allocate the semaphore data struc-
ture. The following xSemaphoreCreateBinary() function call creates a binary
semaphore:

SemaphoreHandle_t xSem = xSemaphoreCreateBinary();

A binary semaphore is given (unlocked) by the xSemaphoreGive() function
[15] [16]. The declaration of the function is:

4If the queue is empty, the item cannot be received from it. The calling task is placed into
blocked state and waits there for a queue item to arrive for up to xTicksToWait ticks. If the
xTicksToWait argument is set to portMAX_DELAY, the task is suspended for an indefinite time,
until a queue item arrives. In this case, the INCLUDE_vTaskSuspend option has to be set to one
in the src/FreeRTOSConfig.h configuration file.

5SemaphoreHandle_t is a void pointer type.

64 EXERCISE 8. DEADLOCKS

BaseType_t xSemaphoreGive(SemaphoreHandle_t xSemaphore);

The function returns the pdPASS value on success. The function will fail if the
semaphore is already given. The function argument is:
xSemaphore ... semaphore handle

For instance, the following xSemaphoreGive() function call gives the xSem
semaphore:

xSemaphoreGive(xSem);

A binary semaphore is taken (locked) by the xSemaphoreTake() function [15]
[16]. The declaration of the function is:

BaseType_t xSemaphoreTake(SemaphoreHandle_t xSemaphore,
TickType_t xTicksToWait);

The function returns the pdPASS value on success. The function will fail if the
semaphore is already taken. The function arguments are:
xSemaphore ... semaphore handle
xTicksToWait ... maximum number of ticks to wait6

For instance, the following xSemaphoreTake() function call takes the xSem
semaphore. In case the semaphore is already taken, the calling task is suspended
for an indefinite time until the semaphore is given:

xSemaphoreTake(xSem, portMAX_DELAY);

To use the xSemaphoreCreateBinary(), xSemaphoreGive() and xSemaphore
Take() functions, the FreeRTOS.h and semphr.h header files have to be included.

#include <FreeRTOS.h>
#include <semphr.h>

FreeRTOS software timer

The master task from Fig. 8.1 must have a higher priority than the other tasks.
Therefore, it has to be a periodic task (see Exercise 6) regularly placing itself into
blocked state in order to make the CPU available to others. A periodic task can be
avoided if a FreeRTOS provided software timer is used. A software timer regularly
calls a finite timer callback function, thus providing the same functionality as a
periodic task.

Software timers are provided by a special Timer Service task. The task is cre-
ated at the FreeRTOS scheduler start, likewise the Idle task. The Timer Service
task priority and stack depth in words are set by the configTIMER_TASK_PRIORITY
and configTIMER_TASK_STACK_DEPTH options in the src/FreeRTOSConfig.h con-
figuration file. Commands to the software timers are passed to the Timer Service
task by a special Timer Command queue. The length of the queue is set by the
configTIMER_QUEUE_LENGTH option.

6If the semaphore is already taken (locked), the calling task cannot take it. The calling task
is placed into blocked state and waits there for the semaphore to be given (unlocked) for up to
xTicksToWait ticks. If the xTicksToWait argument is set to portMAX_DELAY, the task is suspended
for an indefinite time, until the semaphore is given. In this case, the INCLUDE_vTaskSuspend
option has to be set to one in the src/FreeRTOSConfig.h configuration file.

65

Before usage, a software timer needs to be created by the xTimerCreate()
function7 [15] [16]. The declaration of the function is:

TimerHandle_t xTimerCreate(char *pcTimerName,
TickType_t xTimerPeriod,
UBaseType_t uxAutoReload,
void *pvTimerID,
TimerCallbackFunction_t pxCallbackFunction);8

The function returns a handle to a newly created timer. The timer is initially
stopped. If there is not enough heap memory available to allocate the timer data
structure, the function will fail and NULL will be returned. The arguments of the
function are:
pcTimerName ... timer name
xTimerPeriod ... timer period in ticks
uxAutoReload ... reload flag9

pvTimerID ... pointer to timer identifier
pxCallbackFunction ... pointer to timer callback function

For instance, the function call

TimerHandle_t xTimer =
xTimerCreate("Master", pdMS_TO_TICKS(100), pdTRUE, NULL, master);

creates a software timer named "Master" with no identification. When started,
the timer expires repeatedly on every 100ms. The callback function declared
as void master(TimerHandle_t); is called by the Timer Service task on every
expiration. The xTimer handle to a newly created software timer is returned.

A stopped timer is started by the xTimerStart() function10 [15] [16]. The
function sends a command to start the specified software timer to the Timer
Service task using the Timer Command queue. The declaration of the function
is:

BaseType_t xTimerStart(TimerHandle_t xTimer,
TickType_t xTicksToWait);

The function returns the pdPASS value on success. If the software timer was
already started, it is reset. The function will fail if the Timer Command queue is
full and the command cannot be sent. The function arguments are:

7The configUSE_TIMERS option must be set to one and the configSUPPORT_DYNAMIC_ALLOCA
TION option must not be set to zero in the src/FreeRTOSConfig.h configuration file to make the
xTimerCreate() function available.

8TimerHandle_t is a void pointer type.
TimerCallbackFunction_t is a function pointer type. The function type is void func(TimerHan
dle_t).

9The uxAutoReload flag specifies a one-shot or regular timer. When started, a one-shot timer
(uxAutoReload = pdFALSE) expires only once after the xTimerPeriod ticks. When started, a
regular timer (uxAutoReload = pdTRUE) expires repeatedly on every xTimerPeriod ticks.

10The configUSE_TIMERS option must be set to one in the src/FreeRTOSConfig.h configuration
file to make the xTimerStart() function available.

66 EXERCISE 8. DEADLOCKS

xTimer ... software timer handle
xTicksToWait ... maximum number of ticks to wait11

For instance, the following xTimerStart() function call sends a command to start
the xTimer software timer, and returns immediately:

xTimerStart(xTimer, 0);

To use the xTimerCreate() and xTimerStart() functions, the FreeRTOS.h
and timers.h header files have to be included.

#include <FreeRTOS.h>
#include <timers.h>

Application initialization

Two semaphores can be driven with the four button keys available on the external
board. The first semaphore is taken/given by pressing the key T1/T2, and the
second semaphore by keys T3/T4. According to the Fig. 8.1, two queues and a
master task are also needed. The pseudo code of the application initialization is:

create and give two semaphores
create key and UART queue
create and start software timer implementing master task
start scheduler

With application initialized, the FreeRTOS scheduler is started, and the master
task is configured as a software timer callback function. The function itself is
discussed in the next section. Note that the main() function stack is reused after
the FreeRTOS scheduler is started. Therefore, the queue, semaphore and software
timer handles must be global.

Master task

The master task is implemented in a software timer callback function. In each
execution, the function has to: detect key pressed events and send them to the
key queue, receive messages from the UART queue and send them to the stdio,
and check a predefined scenario to start/stop the tasks that are due. To start a
task, the xTaskCreate() function can be used, and vTaskDelete() to stop it.
The pseudo code of the master task callback function is:

11If the Timer Command queue is full, the command cannot be sent to it. The calling task
is placed into blocked state and waits there for a queue space to become available for up to
xTicksToWait ticks. If the xTicksToWait argument is set to portMAX_DELAY, the task is suspended
for an indefinite time, until a queue space is available. In this case, the INCLUDE_vTaskSuspend
option has to be set to one in the src/FreeRTOSConfig.h configuration file. If the xTimerStart()
function is called before the FreeRTOS scheduler is started, the xTicksToWait argument will be
ignored.

67

for each of the four keys
if the key is down and was up in the previous execution

send key identifier to key queue
save key position for the next execution

while reading from UART queue is successful
send obtained item to stdio

get current tick
while current record in scenario is due

perform the record, i.e., start/stop specified task
go to next record, i.e., increase index that points to current record

The algorithm above supposes that the records in the predefined scenario are time
ordered. A global index pointing to the current record, i.e., the first unfulfilled
record in the scenario, is used. The scenario data structure can be organized in
different ways. For instance, a two dimensional array can be used, e.g.:

int32_t scenario[][3] =12

{{ 5, 1, 2}, /* record 1: at 5s start task 1 with priority 2 */
{10, 2, 3}, /* record 2: at 10s start task 2 with priority 3 */
{15, 1, -1}, /* record 3: at 15s stop task 1 */
{-1, 0, 0}}; /* end of scenario */

In the example scenario data structure above, each record contains three integers:
time, task and priority. A negative priority signifies a task stop. A negative time
marks the end of the record list.

Ordinary tasks

An ordinary task indicates that it is in the running state by turning the corre-
sponding LED on the external board on. Since four LEDs are available, there can
be up to four different ordinary tasks in the master’s scenario. Ordinary tasks
are started/stopped by the master task. The priority of an ordinary task must be
set below the master task priority, i.e., below the Timer Service task priority. An
ordinary task runs in an endless loop. Besides indicating its running state, an or-
dinary task checks the key queue in every iteration. If a key event is received, the
corresponding semaphore action will be performed. A message about the progress
of the performed semaphore action is send to the UART queue for the master task
to dispatch it to the stdio. The pseudo code of an ordinary task is:

12int32_t is a 32-bit integer type.

68 EXERCISE 8. DEADLOCKS

while forever
turn corresponding LED on and the others off
if reading from key queue is successful

if key T1 received
send message ‘trying to take semaphore one’ to UART queue
take semaphore one
send message ‘semaphore one taken’ to UART queue

if key T2 received
enter critical section
give semaphore one
send message ‘semaphore one given’ to UART queue
exit critical section

if key T3 received
send message ‘trying to take semaphore two’ to UART queue
take semaphore two
send message ‘semaphore two taken’ to UART queue

if key T4 received
enter critical section
give semaphore two
send message ‘semaphore two given’ to UART queue
exit critical section

Semaphore take actions are indefinite. If the semaphore is already taken, the
calling task will be suspended for an indefinite time until the semaphore is given.

A section of code, that gives a semaphore and sends a message about it, is
critical. Otherwise, if a higher priority task is waiting for the semaphore, the task
will be preempted immediately after giving the semaphore.

Idle task

The Idle task turns all the LEDs off indicating that no ordinary task is running.
It also cannot give or take a semaphore. The received key events are ignored. The
pseudo code of the Idle task hook function (see Exercise 2) is:

turn all LEDs off
read from key queue

Deadlock scenarios

A task, wanting to take an already taken semaphore, has to wait until the
semaphore is given. A deadlock occurs when waiting never ends. Each task
in a deadlock is waiting for another task in the deadlock to give the semaphore
it is waiting for. Therefore, the tasks wait for each other indefinitely without a
progress.

Recursive deadlock

If a task tries to take the same binary semaphore twice without giving it, a recur-
sive deadlock will occur. The task locks itself. It is placed in a suspended state
and waits indefinitely for itself to give the semaphore (see Fig. 8.2). This typically
happens in recursive functions.

69

task

created take S take S

running suspended
t

Figure 8.2: Recursive deadlock (S ... semaphore)

Termination deadlock

A task termination leaving a taken semaphore can lead to a termination deadlock.
If another task tries to take the same semaphore, it will get suspended (see Fig.
8.3).

created take S

high running suspended
t

created take S terminated

low running ready running
t

Figure 8.3: Termination deadlock (S ... semaphore)

Circular deadlock

Each task in a circular deadlock took one semaphore and wait for the other taken
by another task. A circular deadlock occurs when two or more tasks develop a
circular dependency. A two tasks circular deadlock is shown in Fig. 8.4.

created take S2 take S1

high running suspended
t

created take S1 take S2

low running ready running suspended
t

Figure 8.4: Circular deadlock (S1, S2 ... semaphores)

A circular deadlock will be avoided if all the tasks involved follow the same
semaphore order. Before a task takes a semaphore, it must take all the preceding
semaphores regarding the order, e.g., task high in Fig. 8.4 should take S1 before
S2.

Priority inversion

Priority inversion is not a deadlock. However, it is a harmful scheduling effect
resulting in a high priority task waiting for a middle priority task to finish. Priority
inversion occurs when a medium priority task preempts low priority task that took

70 EXERCISE 8. DEADLOCKS

a semaphore which high priority task waits for (see Fig. 8.5). The scenario breaks
the priority policy.

created take S

high running suspended
t

created

medium running
t

created take S

low running ready running
t

ready

Figure 8.5: Priority inversion (S ... semaphore)

Mutex

Mutex (mutual exclusion) is a binary semaphore with ownership. A mutex is
owned by the task that took it. It can be given only by its owner. A mutex is
created by the xSemaphoreCreateMutex() function13 [15] [16]. The declaration
of the function is:

SemaphoreHandle_t xSemaphoreCreateMutex(void);

The function returns a handle to the created mutex on success. The mutex is
created in a given (unlocked) state. The function will return NULL if there is not
enough heap memory available to allocate the mutex data structure. The following
xSemaphoreCreateMutex() function call creates a mutex:

SemaphoreHandle_t xMut = xSemaphoreCreateMutex();

A mutex is taken (locked) and given (unlocked) by the same xSemaphoreTake()
and xSemaphoreGive() functions as a binary semaphore.

Besides ownership, a priority inheritance mechanism is also implemented in
the FreeRTOS mutexes. If a high priority task waits for a mutex taken by a
low priority task, the priority of the low task will be temporarily raised to high
until the mutex is given. The low task inherits the priority of the high task while
the high task is waiting. The priority inheritance mechanism solves the priority
inversion problem. The event scenario from Fig. 8.5 will modify into Fig. 8.6 if
mutex is used instead of a binary semaphore.

Since mutexes are owned, the operating system has an information which task
took which mutex. Therefore, when mutexes are used, the operating system could
deal with the termination deadlock. However, the FreeRTOS does not provide
giving of mutexes left behind.

13The configUSE_MUTEXES option must be set to one and the configSUPPORT_DYNAMIC_ALLOCA
TION option must not be set to zero in the src/FreeRTOSConfig.h configuration file to make the
xSemaphoreCreateMutex() function available.

71

created take M give M terminated

high running suspended running
t

created

medium ready running
t

created take M give M

low running ready running ready

high
t

Figure 8.6: Priority inversion scenario solved by priority inheritance (M ... mutex)

Recursive mutex

Besides an ordinary mutex, the FreeRTOS also provides a recursive mutex. A re-
cursive mutex has the same properties as an ordinary mutex, i.e., ownership and
priority inheritance, but can be taken more than once. It becomes available (un-
locked) when given the same number of times as taken. A recursive mutex is used
in the same way as a binary semaphore or a mutex. However, the recursion imple-
menting xSemaphoreCreateRecursiveMutex()14, xSemaphoreTakeRecursive()
and xSemaphoreGiveRecursive() functions [15] [16] have to be used. The decla-
rations of the functions are:

SemaphoreHandle_t xSemaphoreCreateRecursiveMutex(void);
BaseType_t xSemaphoreGiveRecursive(SemaphoreHandle_t xMutex);
BaseType_t xSemaphoreTakeRecursive(SemaphoreHandle_t xMutex,

TickType_t xTicksToWait);

The functions are analogous to xSemaphoreCreateMutex(), xSemaphoreGive()
and xSemaphoreTake() functions. A recursive mutex is created, waited for until
available, taken, and given by the following function calls:

SemaphoreHandle_t xRecMut = xSemaphoreCreateRecursiveMutex();
xSemaphoreTakeRecursive(xRecMut, portMAX_DELAY);
xSemaphoreGiveRecursive(xRecMut);

Since the recursive mutex can be taken more than once, it solves the recursive
deadlock from Fig. 8.2. Using a recursive mutex, the task cannot lock itself (see
Fig. 8.7).

Priority ceiling

In priority ceiling, a priority is assigned to each semaphore. A semaphore priority
has to be equal or higher than the priority of any task using the semaphore. When

14The configUSE_MUTEXES and configUSE_RECURSIVE_MUTEXES options must be set to one and
the configSUPPORT_DYNAMIC_ALLOCATION option must not be set to zero in the src/FreeRTOSCon
fig.h configuration file to make the xSemaphoreCreateRecursiveMutex() function available.

72 EXERCISE 8. DEADLOCKS

task

created take RM take RM give RM give RM terminated

running
t

Figure 8.7: Recursive mutex (RM) usage

a task takes the semaphore, its priority is boosted to the semaphore priority until
the semaphore is given. Therefore, while holding the semaphore, the task cannot
be preempted by another task using the same semaphore. The priority ceiling
mechanism solves the circular deadlock and the priority inversion problem. The
event scenarios from Figs. 8.4 and 8.5 will modify into Figs. 8.8 and 8.9 if the
priority ceiling mechanism is used.

created
take
S2

take
S1

give
S1

give
S2 terminated

high running
t

created
take
S1

take
S2

give
S2

give
S1

low running ready running

high
t

Figure 8.8: Circular deadlock scenario solved by priority ceiling
(S1, S2 ... semaphores)

created take S give S terminated

high ready running
t

created

medium ready running
t

created take S give S

low running ready
t

high

Figure 8.9: Priority inheritance problem solved by priority ceiling (S ... semaphore)

Although the priority ceiling mechanism solves the circular deadlock and the
priority inversion problem, a high priority task can be repeatedly delayed because
of it. If a low priority task takes a semaphore very often for a relatively long time
intervals, then it will most of the time run at a boosted priority. Whenever due,
the high priority task will likely has to wait instead of immediately preempting
the low task.

73

The priority ceiling mechanism is not implemented in the FreeRTOS. However,
it can be applied manually by raising task priority before semaphore take, and
setting it back to the original level after semaphore give.

Exercise 9

Ramp application

Write a software for the Arduino Due board that drives a ramp model. Use
FreeRTOS. The software should read the password from the stdin. On right
password, the ramp should open, stay opened for a predefined time interval, and
close. In case an obstacle is detected while the ramp is closing, the ramp should
reopen. Ramp models are available in the faculty laboratory.

Explanation

Create a new empty project in the Eclipse working environment as explained
in Exercise 1. Connect the Arduino Due board to the host PC over the Olimex
ARM-USB-OCD-H interface as shown in Fig. 4.1. Configure the UART peripheral
device and the stdio in serial mode as explained in Appendix A.

The ramp model has seven controlling pins, four driving the ramp, and another
three reporting back the ramp status (Tab. 9.1). Connect the ramp model to the
Arduino Due board as shown in Fig. 9.1. Provide the 38kHz signal, required at the
OBST_TX ramp pin, using a PWM1 channel. Configure the rest of the ramp pins
as input and output GPIO pins. Neither pull-up resistors nor debounce filters are
required on input pins. See Appendix A for PWM and GPIO pin configuration
and usage. The software required in this exercise has to appropriately drive the
pins to achieve the desired behavior.

USB

JTAG

A
T
M
E
G
A
16
U
2

UART

Arduino Due

A
T
91
S
A
M
3X

8E

PC7

PA20

PC18

PC16

PC14

PC12

PB14

GND

39

43

45

47

49

51

53

GND

STEP

OBST RX

UP

DOWN

DIR

ON/OFF

OBST TX

GND

ramp
connector

Figure 9.1: Ramp model to Arduino Due board connection

1PWM ... Pulse Width Modulation

76 EXERCISE 9. RAMP APPLICATION

ramp pin direction* description
STEP in motor step (< 300Hz, 50% duty cycle)
OBST_RX out obstacle sensor (0 ... no obstacle / 1 ... obstacle)
UP out ramp open sensor

(0 ... fully open / 1 ... not fully open)
DOWN out ramp closed sensor

(0 ... fully closed / 1 ... not fully closed)
DIR in ramp direction (0 ... up / 1 ... down)
ON/OFF in motor switch (0 ... off / 1 ... on)
OBST_TX in IR sensor (38kHz, 50% duty cycle)
GND ground

*from the ramp perspective

Table 9.1: Ramp pins

Application organization

The application can be coded in different ways. The realization described here
is of course not the only one possible. The proposed application organization is
shown in Fig. 9.2. There are four FreeRTOS tasks. The UARTdrv task drives the
UART, i.e., stdio. It sends the received characters to the RX queue and transmits
the characters received from the TX queue. The check task receives the password
from the RX queue. It verifies the password and notices the ramp task when
to open the ramp. The ramp task drives the ramp. It sets and reads the ramp
input and output pins to open and close the ramp. The ramp task also provides
an information to the step task when the step motor signal is needed. The step
task provides the step motor signal on the ramp STEP pin. All the tasks have
the same priority. An exception is the step task whose priority must be higher to
ensure a steady motor step.

step UARTdrv UART

PWM ramp

st
ep RX

queue
TX
queue

ramp
open

check

Figure 9.2: Ramp application organization

The pseudo code of the application initialization is:

create RX and TX queue
create ramp, check, and UARTdrv tasks with lower priority
create step task with higher priority
set ON/OFF ramp pin to on
start scheduler

77

Tasks

UARTdrv task

The UARTdrv task is an UART driver. It translates the UART device into an RX
and TX queues for the rest of the software. The characters read from the UART
device are send to the RX queue, and the characters received from the TX queue
are written to the UART device. The pseudo code of the UARTdrv task is:

while forever
if reading from UART is successful

send character to RX queue
if receiving from TX queue is successful

do write character to UART
while write is not successful

Note that the UARTdrv task must not get blocked. The UART read/write, the
RX send, and the TX receive functions must return immediately. If the RX queue
is not regularly emptied by the rest of the software, the characters read from the
UART will be thrown away. On the other hand, all characters received from the
TX queue are written to the UART. The only limit is the UART speed.

check task

The check task prompts the user to enter the password. The TX queue is used.
Then obtains the password character by character from the RX queue until a
newline character is received. For each received character, an asterisk is send
back. If the obtained password is correct, the open global variable is set to notice
the ramp task to open the ramp. The pseudo code of the check task is:

while forever
initialize empty password
send prompt string (character by character) to TX queue
while forever

while receiving from RX queue is not successful
do nothing

if newline received
break

else
add character to password
send asterisk to TX queue

if password is correct
set open global variable

The strcmp() string compare function declared in the string.h header file comes
in handy for password verification.

ramp task

Every time the open global variable is set, the ramp task performs one lifting
cycle. The ramp is opened, stay opened for a predefined amount of time, and
closed. During the closing part, the obstacle sensor is checked. If an obstacle is
detected, the ramp will be reopened. Essentially, the ramp task just appropriately
sets and reads the ramp input and output pins to achieve the desired behavior.
The pseudo code of the ramp task is:

78 EXERCISE 9. RAMP APPLICATION

while forever
if open global variable is set

reset open global variable
while forever

set DIR pin to up
set step global variable
while ramp is not fully open (use UP pin)

do nothing
reset step global variable
go to blocked state for a predefined amount of time2
set DIR pin to down
set step global variable
while ramp is not fully closed (use DOWN pin) and

there is no obstacle (use OBST_RX pin)
do nothing

reset step global variable
if ramp is fully closed (use DOWN pin)

break

The ramp is moving when the step motor signal at STEP pin is present, and stand
still otherwise. The STEP pin is not directly controlled by the ramp task. The
step global variable is used to inform the step task when the step motor signal is
needed.

step task

The step task is a periodic task toggling the STEP pin when the step motor signal
is needed, i.e., when the step global variable is set. The signal frequency is one
half of the task’s frequency rate. The pseudo code of the step task is:

get current tick
while forever

if step global variable is set
toggle STEP ramp pin

go to blocked state until one half of signal period passes

The priority of step task must be higher than the priorities of other tasks. To
ensure a steady step motor signal, the task must not miss its deadlines.

2Use vTaskDelay() function.

Appendix A

Peripheral device initialization and usage
receipts

Initialization and usage code examples for some peripheral devices of the
AT91SAM3X8E µC can be found in this appendix. The code is tailored to the
exercises described in this collection. Of course, the peripheral devices can also
be configured and used in many other ways not presented here. For detailed
information about AT91SAM3X8E peripheral devices, see [8].

GPIO pins

There are four PIO1 controllers (i.e., PIOA, PIOB, PIOC and PIOD) in the
AT91SAM3X8E µC, each controlling up to 32 I/O pins. All four PIO controllers
are enabled during the hardware initialization in the board_init() function call.

To configure the specified pins, e.g., PC24, PC25, PC26 and PC28, as input pins
with pull-up resistors and debouncing filters with cutoff frequency at 20Hz, use:

pio_configure(PIOC, PIO_INPUT, PIO_PC24 | PIO_PC25 | PIO_PC26 |
PIO_PC28, PIO_PULLUP | PIO_DEBOUNCE);

pio_set_debounce_filter(PIOC, PIO_PC24 | PIO_PC25 | PIO_PC26 |
PIO_PC28, 20);

If the PULL_UP attribute is omitted, the pull-up resistors are not enabled. The
same goes for the DEBOUNCE attribute and the debouncing filters. Without
DEBOUNCE attribute, the debouncing filters are not enabled. In that case, the
pio_set_debounce_filter() function call is irrelevant.
To read the specified input pin, e.g., PC24, state, use:

uint32_t ulState = pio_get(PIOC, PIO_INPUT, PIO_PC24);

Regarding the input pin state, the function returns zero or one.
To configure the specified pins, e.g., PC21, PC22, PC23 and PC29, as output

pins with initial value zero, use:

pio_configure(PIOC, PIO_OUTPUT_0, PIO_PC21 | PIO_PC22 | PIO_PC23 |
PIO_PC29, 0);

To reset the specified output pin state, e.g., PC21, use:

1PIO ... Parallel I/O

80 APPENDIX A. PERIPHERAL DEVICE RECEIPTS

pio_clear(PIOC, PIO_PC21);

To set the specified output pin state, e.g., PC21, use:

pio_set(PIOC, PIO_PC21);

To toggle the specified output pin state, e.g., PC7, use:

pio_toggle_pin(PIO_PC7_IDX);

To use the PIO functions, the pio.h header file has to be included.

#include <pio.h>

UART and stdio in serial mode

An I/O pin can be configured as a GPIO pin, or as a pin hardwired to a peripheral
device. However, any pin cannot be hardwired to any peripheral device. Each pin
has up to two predefined peripheral devices that can be hardwired to it. The
UART peripheral device has URXD2 and UTXD3 lines hardwired to the PA8 and
PA9 I/O pins of the PIOA.

The configuration of the PA8 and PA9 I/O pins as UART pins is performed on
demand during the Arduino Due board initialization in the board_init() func-
tion. To request the UART configuration, define the CONF_BOARD_UART_CONSOLE
macro in the src/conf_board.h file:

#define CONF_BOARD_UART_CONSOLE

The PA8 and PA9 I/O pins are connected to the additional ATMEGA16U2 µC on
the Arduino Due board. The additional µC acts as an UART to USB converter to
the on-board Programming USB port. Such a solution needs a pull-up resistor at
the PA8 I/O pin of the PIOA (i.e., the URXD line). However, all pull-up resistors
are disabled in the board_init() call. The PA8 pull-up resistor has to be enabled
by:

pio_pull_up(PIOA, PIO_PA8, PIO_PULLUP);

To use the pio_pull_up() function, the pio.h header file has to be included.

#include <pio.h>

To configure the stdio in serial mode and initialize the UART device to
38400/8-N-14, the following code can be used:

usart_serial_options_t xUARTconf = {.baudrate = 38400,
.paritytype = UART_MR_PAR_NO};

stdio_serial_init(UART, &xUARTconf);5

2URXD ... UART Receive Data
3UTXD ... UART Transmit Data
438400 baud, 8 data bits, no parity, 1 stop bit.
5Note that the speed of the UART peripheral device is calculated regarding the MCK settings

in the src/conf_clock.h file.

81

To use the stdio_serial_init() function and the usart_serial_options_t
structure, the stdio_serial.h header file has to be included.

#include <stdio_serial.h>

With stdio configured, the stdio functions (e.g., getchar(), putchar(), etc.) can
be used. The URXD line is used as stdin, and UTXD as stdout.

The stdio getchar() function waits for a character at stdin. It returns when
a character is available, e.g., when a keyboard key is pressed and the character
is received on the URXD line. Therefore, the getchar() function may wait in-
definitely long. When waiting has to be avoided, the ASF provided uart_read()
function can be used. The function returns zero on success. If a character on the
URXD line is not available, one will be returned. To read a character from the
URXD line and save it into the ucCharacter variable of uint8_t6 type, use:

uint32_t ulError = uart_read(UART, &ucCharacter);

For writing to the UTXD line, the equivalent uart_write() function is available.
The function returns zero on success. If writing fails, i.e., the UART transmit
buffer is full, one will be returned. To write a character in the ucCharacter7

variable to the UTXD line, use:

uint32_t ulError = uart_write(UART, ucCharacter);

TC as a free running counter

There are three TC modules available in the AT91SAM3X8E µC. Each module
has three channels. Thus, there are nine independent TC channels available. The
channels 0, 1 and 2 belong to the TC0 module, 3, 4, and 5 to the TC1 module, 6,
7, and 8 to the TC2 module.

A TC channel has to be clocked first. The clock is provided through the PMC8.
The TC channel 0 clock is enabled by:

pmc_enable_periph_clk(ID_TC0);

With TC channel 0 clocked, it becomes available. The channel 0 of the TC0
module is configured as a free up-running counter with counting frequency fMCK

2
with:

tc_init(TC0, 0, TC_CMR_WAVE);

The µC master clock frequency fMCK can be obtained in the SystemCoreClock
global variable.

After configuration, the counter has to be started. The channel 0 of the TC0
module is started by:

tc_start(TC0, 0);

The current counter value of the TC channel 0 is read by:

6uint8_t is an 8-bit unsigned integer type.
7ucCharacter is an uint8_t type variable.
8PMC ... Power Management Controller

82 APPENDIX A. PERIPHERAL DEVICE RECEIPTS

uint32_t ulVal = tc_read_cv(TC0, 0);

To use the TC functions, the tc.h header file has to be included.

#include <tc.h>

A free running counter can be used to measure time intervals. The counter
is read at the beginning and at the end of the interval. Knowing the counting
frequency, the passed time interval can be calculated. In the following code, the
interval is calculated in microseconds:

uint32_t ulInterval_us, ulStop, ulStart = tc_read_cv(TC0, 0);
...

ulStop = tc_read_cv(TC0, 0);
ulInterval_us = 2e6 * (ulStop - ulStart) / SystemCoreClock;

Using PWM peripheral device as a signal generator

A PWM peripheral device in the AT91SAM3X8E µC has eight channels, each
generating an independent waveform. It has to be clocked first. The clock is
provided through the PMC. The PWM device clock is enabled by:

pmc_enable_periph_clk(ID_PWM);

The PWM device provides thirteen MCK based clock sources to its channels. Two
of them are distinct and have to be additionally configured. To disable the special
clock sources, use the following code:

pwm_clock_t xPWMClk = {0};
...

xPWMClk.ul_mck = SystemCoreClock;
pwm_init(PWM, &xPWMClk);

Note, that the SystemCoreClock global variable is set in the sysclk_reinit()
function call, and therefore should not be used before the call.

To configure an individual channel, the channel has to be disabled. Channel
two is disabled by:

pwm_channel_disable(PWM, PWM_CHANNEL_2);

A frequency, duty cycle, and a clock source has to be configured for an individual
channel. To get a signal on channel two with frequency, 50% duty cycle, and using
MCK as a clock source, use the following code:

pwm_channel_t xPWMChannel = {0};
...

xPWMChannel.channel = PWM_CHANNEL_2;
xPWMChannel.ul_prescaler = PWM_CMR_CPRE_MCK;
xPWMChannel.ul_period = SystemCoreClock / frequency;
xPWMChannel.ul_duty = xPWMChannel.ul_period / 2;
pwm_channel_init(PWM, &xPWMChannel);

Again, be aware that the SystemCoreClock global variable is set in the sysclk_re

83

init() function call.
After configuration, the channel is enabled by:

pwm_channel_enable(PWM, PWM_CHANNEL_2);

To use the PWM functions, the pwm.h header file has to be included.

#include <pwm.h>

Finally, the configured and enabled PWM channel has to be hardwired to a
GPIO pin to become available. Note that an individual peripheral device output
cannot be hardwired to an arbitrary pin. The PWM channel two can be hardwired
to the PB14 pin:

pio_set_peripheral(PIOB, PIO_PERIPH_B, PIO_PB14);

Appendix B

External board LCD

There is an LCD1 available on the external board. This appendix provides a short
LCD usage instructions, although the LCD is not explicitly used in the laboratory
work. A detailed LCD description can be found in [22].

If the LCD is connected to the Arduino Due board as shown in Fig. B.1, the
LCD functions in src/lcd.h file can be used. Of course, the lcd.h file has to be
included.

#include <lcd.h>

Arduino Due

A
T
91
S
A
M
3X

8E

PA2

PA3

PA4

PA6

PA22

PA23

PA24

GND

A7

A6

A5

A4

A3

A2

A1

GND

5V

D7

D6

D5

D4

E2

RW

RS3

GND

+5

External board

L
C
D

Figure B.1: LCD to Arduino Due board connection

The LCD is initialized by:

vLCDInit();

The commands and data can be sent to LCD using the vLCDWrite() function.
For instance:

1LCD ... Liquid Crystal Display
2E ... Enable
3RS ... Register Select

85

86 APPENDIX B. EXTERNAL BOARD LCD

Set LCD RAM address to the third position in the first line:
vLCDWrite(COMM, DDRAM | 0x02);

Set LCD RAM address to the third position in the second line:
vLCDWrite(COMM, DDRAM | (0x40 + 0x02));

Write character A at the current LCD RAM address:
vLCDWrite(DATA, ’A’);

Note, that LCD functions vLCDInit() and vLCDWrite() internally measure time
intervals using TC channel 2 configured as a free running counter. Therefore, TC
channel 2 cannot be used for other purposes.

For a detailed description of the available LCD commands, see [22]. Predefined
macros with command codes can be found in the src/lcd.h file.

Bibliography

[1] The Eclipse Foundation open source community website, https://eclipse.org ,
Apr. 2015

[2] Oracle website, http://www.oracle.com/index.html , Apr. 2015

[3] R.M. Stallman and the GCC Developer Community, Using the GNU Com-
piler Collection, GNU Press, 2014, Free Software Foundation, https://gcc.gnu
.org/onlinedocs/gcc-4.9.2/gcc.pdf , Apr. 2015

[4] Launchpad website, https://launchpad.net , Apr. 2015

[5] ARM-USB-OCD-H, ARM-USB-OCD User’s Manual, Olimex, 2015, Olimex,
https://www.olimex.com/Products/ARM/JTAG/_resources/ARM-USB-
OCD_and_OCD_H_manual.pdf , Apr. 2015

[6] Open On-Chip Debugger: OpenOCD User’s Guide, 2014, The OpenOCD
Project, http://sourceforge.net/projects/openocd/files/openocd/0.8.0/open
ocd.pdf/download , Apr. 2015

[7] Sourceforge website, http://sourceforge.net , Apr. 2015

[8] ATMEL SAM3X / SAM3A Series Datasheet, Atmel, 2015, Atmel, http:
//www.atmel.com/Images/Atmel-11057-32-bit-Cortex-M3-Microcontroller-
SAM3X-SAM3A_Datasheet.pdf , Apr. 2015

[9] Arduino Due board website, http://www.arduino.cc/en/Main/ArduinoBoard
Due, Apr. 2015

[10] The ARM Ltd. website, http://www.arm.com, Apr. 2015

[11] The Atmel Corporation website, http://www.atmel.com, Apr. 2015

[12] R.M. Stallman, R. McGrath, P.D. Smithand, GNU Make, Free Software
Foundation, 2014, Free Software Foundation, http://www.gnu.org/software/
make/manual/make.pdf , Apr. 2015

[13] AT91SAM3X8E source files, makefiles and linker script from ASF for labo-
ratory exercises, http://fides.fe.uni-lj.si/~janezp/embedded_systems/asf.zip,
Oct. 2017

[14] The FreeRTOS website, http://www.freertos.org , Apr. 2017

[15] R. Barry, Mastering the FreeRTOS Real Time Kernel, Real Time Engineers
Ltd., 2016, http://www.freertos.org/Documentation/161204_Mastering_the
_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf , Apr.
2017

88 BIBLIOGRAPHY

[16] The FreeRTOS Reference Manual, Real Time Engineers Ltd., 2016, http://ww
w.freertos.org/Documentation/FreeRTOS_Reference_Manual_V9.0.0.pdf ,
Apr. 2017

[17] A. Silberschatz, P.B. Galvin, G. Gagne, Operating System Concepts, 9th ed.,
Willey, 2013

[18] Cortex-M3 Technical Reference Manual, ARM Ltd., 2010, http://infocenter.
arm.com/help/topic/com.arm.doc.ddi0337e/DDI0337E_cortex_m3_r1p1_
trm.pdf , Apr. 2015

[19] ARM Procedure Call Standard for the ARM® Architecture, ARM Ltd., 2012,
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042e/IHI0042E_aap
cs.pdf , Apr. 2015

[20] D. Elsner, J. Fenlason & friends, Using as / The GNU Assembler, Free Soft-
ware Foundation, 2009, HTML version: https://sourceware.org/binutils/docs
/as/index.html , Apr. 2015

[21] ARMv7-M Architecture Reference Manual, ARM Ltd., 2014

[22] HD44780U (LCD-II) (Dot Matrix Liquid Crystal Display Controller/Driver),
Hitachi, 1998, Alldatasheet, http://pdf1.alldatasheet.com/datasheet-pdf/view
/63663/HITACHI/HD44780U.html , Apr. 2017

The script contains instructions and detailed explanation of laboratory
exer-cises covered in the Real-time operating systems course that is
held in the third semester of the 2nd Cycle Postgraduate Study
Programme in Electrical Engi-neering, study programme option
Electronics, at the Faculty of electrical engi-neering of the University
of Ljubljana, Slovenia. The laboratory exercises focus on usage of
operating system features such as: task scheduling, scheduling al-
gorithms, memory protection, stack and heap management, semaphores
and mutexes, etc., in embedded applications.

Operating system, Real-time, C language, FreeRTOS, ARM Cortex-
M3, AT91SAM3X8E

REAL-TIME
OPERATING
SYSTEMS:
LABORATORY
EXERCISES

KEYWORDS

ISBN 978-961-243-381-9 ZALOŽBA
FAKULTETE ZA
ELEKTROTEHNIKO

