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1. INTRODUCTION

Optimisation methods are used to improve the performance of an analogue electronic circuits1. Numerous of
papers, describing different algorithms, have been published (see, for example 2, 3, 4, 5 and 6). The success of the
optimisation algorithm greatly depends on the selection of the initial point. The same method can lead to quite
different results for variety of initial points. Local methods are usually more sensitive than global ones 7 and 8. The
later have always built in some randomness, which neutralises the importance of the proper selection of
algorithms starting point.

The selection of the initial trial is usually left to the user, who relies upon his knowledge and intuition. It is
normally chosen in a point, where the circuits best performance is expected. If the estimation is right, the
minimum of the cost function lies near and the optimisation task is easy. But on the other hand no additional
information is gained. The optimisation process just confirms the expectations. A great part of the parameter
space is left unexplored and the question of finding better solution remains open.

Whole parameter space has to be explored to answer the question for sure. So the circuit has to be optimised
from several initial points, and each optimisation run has to cover other part of the parameter space. The
optimisation process becomes a group of several optimisation runs with this approach. For finding a proper
initial trial of each run a probabilistic global method5 could be employed. Unfortunately it is developed only in
one dimension, requires relatively high computational overhead, and is slow in the nearness of the minimum.
The paper proposes new heuristic method, which idea basis on probabilistic method5. It can be applied in
multidimensional parameter space and does not require significant computer effort.

Two artificial mathematical cases illustrate the behaviour of heuristic method. Further the method is applied
on two electrotechnic examples: MOSFET model parameter extraction and integrated operational amplifier
optimisation.

2. ONE DIMENSIONAL APPROACH WITH PROBABILISTIC METHOD

Let cost function E(x), x ∈ A ⊆ ℜn, E: ℜn → ℜ be real function, where A denotes a feasible region. Purpose of
every optimisation process is to find a global minimum x0 of cost function E(x)1, E(x0) ≤ E(x), ∀x ∈ A. In one
dimension explicit constraints defines feasible region or parameter space as an interval A = [xlow, xhigh]. Let us
define a continuous stochastic process f(x, ω)9. It assigns a function f(x) to every outcome ω ∈ Ω of an
experiment ζ. The domain of ω is the set of all experimental outcomes Ω, and the domain of x is a set of real
numbers ℜ. Let one dimensional cost function E(x) be equal to a realisation of the stochastic process f(x, ω) for
an outcome ω0 on the interval A.

(1)

Cost function E(x) is an arbitrary real function on the interval A. The distribution function G(f0, x) gives a
probability of an event {f(x, ω) ≤ f0} at a particular x by its definition. We presume normal distribution for G(f0,
x)5 with variance σ2(x) and expected value m(x).

(2)

After one or more optimisation runs the cost function has been evaluated at several points. Lets say we have k
such points x1, x2, … xk, and the cost function values E(xi), i = 1, 2, … k, are known. Let an event Zk is defined as
a {f(xi, ω) = E(xi), i = 1, 2, … k}. In other words, the event Zk occurs, when the stochastic process function f(x, ω)
equals to cost function E(x) in all known points x1, x2, … xk, for an outcome ω. The event Zk becomes certain if
expected value m(x) equals to cost function and if variance σ2(x) is zero at all known points. Therefore m(xi) =
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E(xi) and σ2(xi) → 0 for i = 1, 2, … k. When mean and variance has those properties, the distribution G(f0, x)
becomes a conditional probability of an event {f(x, ω) ≤ f0 / Zk}.

Let us further set index of a point xj with the lowest cost function value to opt, xj = xopt. So the relation E(xopt)
≤ E(xi), i = 1, 2, … k, is valid. Further we define a function fmin(x, ω). Its value is always lower than E(xopt) for an
arbitrary x and any outcome ω.

(3)

Figure 1: Functions fmin(x, ω) (solid) and realisations of a stochastic process f(x, ω) (dashed) for different outcomes ω. The
event Zk is certain, therefore m(xi) = E(xi) and σ2(xi) → 0, i = 1, 2, … k,   k = 4.

Distribution Gmin(f0, x) of function fmin(x, ω) gives the probability of an event {fmin(x, ω) ≤ f0 / Zk}, where Zk

represents a certain event as above. It can be obtained from the distribution G(f0, x) and the definition of fmin(x,
ω). We can also get the density function gmin(f0, x), which is the derivative of distribution Gmin(f0, x).

(4)

(5)

Functions u(f0 - E(xopt)) and δ(f0 - E(xopt)) in equations (4) and (5) represent a unit step function and its derivative,
a unit Dirac impulse, respectively.

The expected value E{fmin(x, ω) / Zk} is a mean of the function fmin(x, ω) at a particular x and different
outcomes ω. Because of the event Zk it equals to the cost functions value E(xopt) in all k known points. The
question is where to choose new initial point for the next optimisation run, if the cost is already known in k
points. A natural decision is to set it there, where the expected value E{fmin(x, ω) / Zk} is minimal. The lowest
cost function value can be expected than, according to our current knowledge. To find out new starting point x0 a
minimisation problem (6) has to be solved. The integral definition of expected value further expresses the
minimisation problem with density function gmin(f0, x). Upper bound of definite integral can be set to E(xopt) using
equation (5).

(6)

The minimisation problem (6) can be transformed into a maximisation problem (7) using the distribution
function Gmin(f0, x) instead of density.

(7)

The distribution and density functions of limited random walk9, also known as Wiener process w(t), are normal
with constant mean and variance increasing with t. We also presumed normal distribution for our process f(x, ω).
Wiener process w(t) is continuous function of variable t. If we suppose that cost function E(x) is continuous near
known points, than it can be a sample path of a Wiener process in their nearness. This assumption does not place
any physically unrealistic limitations on types of cost functions, which take place in circuit design optimisation
problems. Therefore we can presume constant expected value and linearly increasing variance near known
points. We set the mean and variance to m(x) = E(xi) and σ2(x) = α|x - xi| around ith point. For such setting the
event Zk is certain as well. In nearness of every determined point the equation (7) becomes (8).

(8)
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The expression in equation (8) is monotonically decreasing function of cost value E(xi) and monotonically
increasing function of distance |x - xi|. This leads to two statements. First new initial point x0 lies rather closer to
the known points with lower cost function values, than those with higher ones. And second it lies away form all
known points so the distance to the nearest one is large. Both conclusions can be intuitively generalised to n
dimensional parameter space. A simple heuristic method, described in continuation, basis on them.

3. A HEURISTIC METHOD FOR FINDING NEW INITIAL POINTS

The second conclusion defines a thesis, that new initial point has to be somewhere in parameter space, where a
density of already determined points is low. If it is low, then we expect the average distance between two nearest
points to be large in general. But we have to define how to measure known points density. Let us divide the
parameter space into 2n equal subspaces (2n equal boxes). Let the density be equal to the number of known points
in a particular subspace, and let it be constant over whole subspace. New initial point will be chosen in the
subspace with the lowest density.

The first conclusion on the other hand tells us, that the contribution to the density is not always the same for
all already determined points. Those with lower cost function values should contribute less, than ones with
higher cost values. In the previous definition all of them contributed one unit, regardless to the cost function
value. Therefore known points have to be weighted. Each point will contribute its weight, which has to be
proportional to its cost. Let the weight u of a point with cost function value E be defined with equation (9).

(9)

Emin and Emax represent the lowest and the highest cost function value among already determined points,
respectively. Point with the lowest value has always weight one. The weight of point with the highest value is
given by coefficient β, and now it contributes β times more to the density, than the lowest point.

So far all known points, for which we know, that they violate implicit constraints, are still not included in our
definition of density. They do not have cost function value E, so their weight can not be calculated by equation
(9). But those points gives us some information about the cost and therefore they have to be taken into account.
We set their weight to 2β.

Final heuristic algorithm for determining new initial point for the next optimisation run is described in the
repeat until loop below. Space is divided into 2n equal subspaces, until we find a subspace with no points
determined yet. New initial point is selected there randomly. The algorithm is very simple, so it demands only a
small amount of computational time.

calculate weights for all known points;
temporary space := explicitly constrained space;
repeat

divide temporary space into 2n equal subspaces;
add up weights in particular subspaces;
temporary space := subspace with the lowest sum of weights;

until lowest sum ≠ 0
randomly pick new point in temporary space;

4. NUMERICAL EXAMPLES

4.1 Two mathematical cases
Two different multidimensional and multiminimum cost functions were considered. They are defined with

expressions:

(10)

where

and   (11)
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First function (10) has 2n equal local minima. In our case n = 4, so we have 16 local minima. The second
function (11) is defined in three-dimensional parameter space. It has global minimum in the origin, and there are
8 valleys leading to it. All of them are cut through with the implicit constraints, except one.

Figure 2: Projection of cost functions (10) and (11) in two-dimensional parameter space

In the first example 16 optimisation runs from initial trials determined with proposed heuristic method were
done. In the second example there were optimisation runs performed until the global minimum was reached. We
used two gradient (steepest descent and Davidon-Fletcher-Powell2) and two direct (Hooke-Jeeves3 and
constrained simplex4) methods in optimisation runs.

Table 1: Results for mathematical examples

first example second example
method used # of different minima found # of cost eval. # of runs # of cost eval.
steepest desc. 16 651 6 830
DFP 16 3124 6 463
HJ 16 2503 6 974
const. simp. 9 5585 1 219

The results show, that different minima are found in sequential optimisation runs with initial points
determined by heuristic. In the first example all 16 local minima were accurately found in 16 runs regardless to
optimisation method used. The exception is constrained simplex algorithm which is partially global and is
therefore able to climb out of local minimum. But it is slower than other three methods. The second example
indicate, that optimisation process travelled through different valley in every run. So sooner or later the right
valley to global minimum is found.

4.2 MOSFET model parameter extraction case
In this example we were looking for appropriate combination of parameter values for SPICE LEVEL 3

MOSFET model. Model parameters were tuned so the ids(vgs, vbs) characteristics would be as close as possible to
the measured ones. The cost function was therefore defined as a weighted sum of an absolute differences
between measured and modelled drain-source current at different combinations of gate-source and bulk-source
voltages6. The constrained simplex method was used as an optimisation method in optimisation runs from
heuristically determined initial points. Table 2 below summarises the results of optimisation process for
MOSFET model parameter extraction.

Table 2: Summarised results for the MOSFET model parameter extraction

VTO
[V]

U0
[cm2/Vs]

NSUB
[1/cm3]

GAMMA
[V1/2]

ETA THETA
[1/V]

KAPPA VMAX
[m/s]

# of cost
eval.

0.769 901 1.79e17 0.928 0.0293 0.998 0.0230 7.70e7 2458
0.769 900 1.80e17 0.928 0.0293 0.996 1.70 5.26e7 2148

heuristic
initial
point* 0.769 900 1.81e17 0.927 0.0293 0.995 1.34 4.58e7 2054
FSD6 0.769 900 1.80e17 0.928 0.0293 0.996 0.382 5.26e7 4258

* typical results (three randomly chosen) of optimisation runs from heuristically determined initial points
fixed model parameters: XJ = 200nm, TOX = 20nm, NFS = 0, LD = 100nm, W = 10µm, L = 1µm

Although the cost function is multiminimum the constrained simplex method did not have any problems with
finding a global minimum in a single run from any initial point. The number of cost function evaluations in
many trials settles around 2000 evaluations per optimisation run. Comparing to FSD (fast simulated diffusion6

method based on simulated annealing) approximately two runs from heuristically determined initial points can
be performed at the same price. More optimisation runs confirm a global minimum on one side and gives some
additional information on the other. In the above example we can see, that all parameters have almost the same
values, except VMAX and KAPPA. Because VMAX influences to ids in a logarithmic manner (increase from 1e4

.3,2,133),2/2/(21 =≤≤−<∧>∨>∨< jprr jπϑπϕ



to 1e5 tends to have the same effect as increase from 1e7 to 1e8) we can say that optimal value for parameter
VMAX is around 5.5e7 m/s. So trials from heuristic initial points confirm the optimal values of all parameters
except KAPPA, which defines channel length modulation in saturation region. Values for KAPPA greatly differs
among individual runs. That indicate small influence of KAPPA to the drain-source current at optimal values of
other parameters. This fact can further also be verified by checking the maximum channel length modulation
∆Lmax versus effective channel length Leff. The ratio ∆Lmax/Leff is less than 4e-6, which further means that ids

increases for at most 0.004‰ due to KAPPA.

4.3 Integrated operational amplifier optimisation
Let us examine the two-stage operational amplifier10 shown in figure 3. The optimisation parameters are

channel lengths and widths of all transistors and a compensation capacitance Cc. Because pairs of transistors M1

and M2, M3 and M4, M7 and M8 are equal, the parameter space is 11 dimensional.

Figure 3: Two stage CMOS operational amplifier

When designing an integrated operational amplifier, there are a lot of desired properties to achieve. For
example high gain, high bandwidth (f-3dB), high phase margin, small current consumption etc. are wanted. All
those requirements are gathered together in cost function. Circuit properties are weighted and their contributions
are summed into a final cost value. Therefore it becomes a trade-off among desired properties and the
consequence is a multiminimum cost function.

In the first six optimisation runs from heuristically determined initial points we get six different local
minima. Three of them are almost equivalent from the cost function point of view. The results are summarised in
Table 3. For finding a minimum in a particular optimisation run the constrained simplex method was used.
Further the circuit was optimised with genetic algorithm8. It finds solutions with relatively low cost value after a
reasonable number of cost evaluations. But those circuits have at least one property completely unsatisfied. Less
or equal number of cost function evaluations is better used with heuristically determined initial points and greedy
optimisation method.

Table 3: Summarised results for the optimisation of the operational amplifier

run |H(j0)|[dB] f-3dB[Hz] ∆ϕ[°] nonlinearity Upp[V] Itot[µA] A[µm2] Emin # of cost eval. total #
1. 68.2 816 49.4 0.030 3.43 27.1 5297 4.705 2009
3. 70.5 510 49.7 0.013 3.23 29.2 4328 4.751 2989
6. 72.1 397 50.6 0.019 3.61 29.8 5720 4.754 2711

15815*

76.1 129 39.1 0.027 3.44 28.9 1795 6.985 after 2281
70.3 411 39.9 0.013 2.33 18.5 1407 6.424 after 4872GA
77.8 175 36.1 0.020 3.70 29.4 1312 5.922 after 9040

22650**

*  total number of cost function evaluations in six optimisation runs
** no better circuit (with Emin < 6) found even after total number of cost function evaluations

5. CONCLUSIONS

In this letter a simple heuristic method for setting an initial point is described. Its idea basis on one
dimensional probabilistic methods extended to more dimensional parameter space. The method leads to accurate
determination of different local minima in several optimisation runs. An arbitrary greedy method could be used
in detached run. It turned out that such approach took less or equal evaluations of cost function as some well
known global methods (for example: simulated annealing and genetic algorithm), which produces less
information (usually only one point, which is probably near global minimum).

The parameter space is generally heavy implicitly constrained in electrotechnical optimisation cases. Finding
a feasible initial point is therefore a serious problem. To avoid this, the cost function can be defined as a trade-
off among desired properties without any implicit constraints in the first stage of optimisation process. Such cost
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function is expected to have lots of minima. For finding them a heuristic method with a greedy optimisation
method could be used. Than cost function is changed, so only one or two of the most important circuit properties
are included in it. Other properties are given as an implicit constraints and found minima can be used as new
initial points in further optimisation process.
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