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Abstract: Analog circuit design is a very complex and time consuming process. The largest percentage of the time is
spent trying to achieve  the best performance by varying the circuit parameters. This is actually an optimization process
and there is a growing desire to automate at least a part of the optimization procedure. Unfortunately the optimization
algorithms are still very slow. This is mostly due to the sheer number of circuit analyses it takes for the optimization
algorithm to converge to a minimum. Obviously any previous knowledge about the shape of the cost function could
help the optimization algorithm to converge faster. Unfortunately (again) the shape of the cost function is generally too
unpredictable to draw any conclusions prior to the optimization run. This paper tries to show that with a special
formulation of the cost function the shape of the cost function itself can be at least partially predicted.

Vpogled v značilnosti kriterijskih funkcij optimizacijskih algoritmov

Ključne besede: računalniško podprto načrtovanje, analogna vezja, optimizacijski algoritmi, kriterijska funkcija,
parameterski prostor

Povzetek: Načrtovanje analognih vezij je zelo zapleten postopek, najtežji del katerega pa je zagotovo določanje
optimalnih vrednosti parametrov vezja. Pri tem gre v bistvu za optimizacijski postopek, kjer načrtovalec s
spreminjanjem vrednosti parametrov skuša doseči čim boljše delovanje vezja. Zaradi zahtevnosti postopka se pojavlja
vse večja želja po določeni avtomatizaciji, to je uporabi optimizacijskih algoritmov za določanje teh parametrov. Žal so
optimizacijski algoritmi zelo zamudni, to pa zaradi velikega števila analiz, ki jih morajo opraviti. Vsaka vnaprejšnja
informacija o lastnostih kriterijske funkcije je zato zelo dobrodošla saj lahko skrajša čas optimizacije. V splošnem
velja, da je oblika kriterijske funkcije nepredvidljiva. Ta članek skuša nakazati, da je v določenih primerih mogoče
obliko kriterijske funkcije do določene mere vnaprej predvideti.

1. Introduction

Analog circuit design is a very complicated
job. An engineer performing it must be highly
skilled and must posses an intimate knowledge
of circuit topologies. In addition he must have
a fairly high amount of patience. The problem
lies in the fact that analog circuit design is a
trial and error process. As the complexity of
analog circuits grows it becomes practically
impossible to  compute the circuit parameters
analytically. The designer has to vary the
circuit parameters and simulate the circuit in
hope of finding the optimal set of values. As
this is actually an optimization problem there
is a growing desire to employ optimization
algorithms to automate at least part of the task
[5-9].

The main reason for computer circuit
optimization not to be widely used in circuit
design is the computational intensity of
optimization algorithms. Although the raw
computing power of modern computers is
steadily increasing the length of optimization
runs is still measured in days. The sheer
number of circuit analyses the algorithms
require and the size of the parameter space are
the main reasons for the slow convergence
rate. It is understandable that there is a strong
interest in the designer community for such
tools and much effort has been (and still is)
poured into the investigation of various
optimization algorithms. The focus of this
research is the minimization of the required
number of circuit analyses to perform a
optimization run. It is interesting to note that
all the research has been focused on the



optimization algorithms alone and that the
formulation of the cost function has been left
untouched.
At first glance this would seem reasonable
enough as common sense indicates that the
behavior of the optimized circuit should vary
unpredictably across the parameter space
investigated by the optimization algorithm.
While this is usually true there are certain
cases where the behavior of the cost function
in the parameter space can be at least partially
predicted and taken into account by the
optimization algorithm.
This paper tries to shed some light on the
properties of a analog circuit cost functions.
The paper is partitioned as follows. First the
cost function formulation is explained. A
mathematical analysis of the resulting cost
function follows. The analytical results are
then substantiated by the numerical results of
optimization runs on real world circuits.
Finally the conclusions are summed up and
some suggestions for future work are given.

2. The cost function formulation

The behavior of a circuit can be described with
a number of measurements. More detailed the
description must be, more measurements it
takes. This is also true for optimization
algorithms. The cost function is usually
defined as a function of a set of measurements,
which are in turn the results of circuit
simulations. In most cases this is an ordinary
linear combination of suitably weighted
measurement values.

Although some research has been done into
cost function formulation it was mainly
centered around the robustness of the resulting
optimized circuit [1-4] while little thought has
been spent on the possible implications for the
optimization algorithm. Even if this work [1,2]
is not directly connected to the investigated
problem it can nevertheless form a solid base
for the analysis of the cost function behavior.
Before proceeding further with the task it
would be best to examine the proposed cost
function formulation.

As mentioned earlier the cost function is
usually a linear combination of suitably
weighted measurement values. The
investigated cost function formulation takes a
different approach. Instead of combining the
measurement values directly a set of criterion
functions is built. These criterion functions are
actually nonlinear transformations that
translate measurement values into cost values.
These cost values are then summed up and
form the cost function itself. The criterion
functions are defined in expression (2).

The situation is shown in figure 1.

Figure 1: A graphical representation of a
criterion function

Geometrically the criterion function is the
combination of two ramps. The criterion
function has two regions, one is the tradeoff
region and the other is the penalty region. A
measurement value in the penalty region
means a working circuit with lower than
specified characteristics that is penalized with
a positive cost value. A measurement in the
tradeoff region belongs to a circuit that meets
the design specification and so it is awarded
with a negative cost value.
Another important concept in robust circuit
design that needs underlining is corners. A
corner is simply put a set of circuit operating
parameters. These can be environmental
parameters (temperature, humidity), process
parameters (process and element tolerances)
and operating conditions (supply voltage).
Optimization results [1,2] have already shown
that this cost function formulation yields
robust circuit designs. Now it must be seen



whether there is anything that can be done
analytically.

3. Mathematical analysis

The problem that will be investigated is the
behavior of the cost function when the number
of criterion functions increases. To tackle this
problem it must be simplified first.
There is a number of assumption to be made to
make the analytical approach manageable.
First only a bounded region of the
measurement space will be observed. Second
the criterion functions will be evenly spaced
across the observed interval of the
measurement space. The slopes of all criterion
functions will be equal. Fourth the tradeoff
coefficients will be all 0.
Even if this set of assumptions seems very
restrictive there will still be a number of useful
conclusions to be drawn from the results. The
described configuration is depicted in figure 2.

Figure 2: The investigated scenario

The notation is as follows: x0 and xN are the
limits of the observed region, N is the number
of ramps, xn are ramp starting points and x is
an arbitrary point in the observed region. The
ramps are defined in equation (3).

The difference between two consecutive xn is
d. An arbitrary point x is then defined in
equation (4).

The ramp starting points is expressed in
equation (5).

The cost function is then the sum of all ramp
functions in the observed interval of the
measurement space.

Expression (6) is still general but after the
substitution of fn(x) with the ramp function
definition (expression (3)) the cost function
expression (7) is obtained.

This expression can be improved with the
introduction of a new variable ε.

The floor (tN) notation in expression (7) can
now be substituted with expression (8) to get
the equation (9).

Apart from the simplification of equation (7)
expression (8) presents an upper bound for ε,
which will be useful later.
In expression (9) the cost function is
dependent on the number of criterion ramp
functions N. Since the number of criterion
functions is the product of the number of



measurements and corners it tends to get very
large. It will prove useful to compute the limit
of the cost function with N approaching
infinity. The result is expression (10).

Notice that both x and t are present in
expression (10). Since they are both rigidly
tied by expression (4) equation (10) can be
expressed with just one of them. The variable t
can be expressed from equation (4).

The resulting expression (11) can then be
substituted in equation (10).

The resulting expression (12) is obviously a
quadratic function of variable x. The
conclusion that can be drawn is that the larger
is the number of criterion functions the more
the cost function resembles half a quadratic
parabola.
The obtained result applies directly only to the
minimization of measurement values. It would
be straightforward to show that the same result
follows from the analysis of a measurement
maximization criterion function.
Notwithstanding the interesting results it must
be born in mind that the analysis was done in
measurement space. The relationships between
circuit parameters and measurement values are
highly nonlinear. Further the assumptions that
were made are generally not fulfilled. It must
therefore be expected that the shape of the cost
function in the parameter space will not be an
ideal quadratic parabola. All that needs to be
done is to check whether the analytical results
resemble in any way real optimization data
obtained on a real world test circuit.

4. The test circuit

The test circuit is the core segment of a real
world operational amplifier. The heart of the
amplifier is a differential telescopic amplifier

stage. The stage consists of transistors m06-
m15. There is also a simplified bias circuitry
(m01-m05) where a complex compensation
circuit is substituted by two current sources
(i01 and i02) and a common mode feed-back
circuit (m17-m20). The bias circuit has also a
temperature compensation made of the
transistors m04 and m05 and the resistor r01.
The schematic diagram of the operational
amplifier is shown in figure 3. Figure 4 shows
the test application of the operational
amplifier.

Figure 3: The schematic diagram of the
simplified operational amplifier

Figure 4: Operational amplifier test application

The test-bench circuit simulates the working
condition of the operational amplifier. The
element values are: rinp and rinm are both
1mΩ, routp and routm are both 1GΩ, cinp,
cinm, cfbp and cfbm are all 500fF, routp and
routm are both 150fF and cgndp and cgndm
are both 2.3pF.



There are 18 matching groups of optimization
parameters in the circuit. These are:
1) the lengths of transistors m03, m06, m11

and m16
2) the lengths of transistors m02, m07 and

m12
3) the lengths of transistors m18 and m20
4) the lengths of transistors m08 and m13
5) the lengths of transistors m09 and m14
6) the lengths of transistors m05, m10 and

m15
7) the lengths of transistors m17 and m19
8) the length of transistor m01
9) the length of transistor m04
10) the widths of transistors mm02, m03,

m06, m07, m11, m12 and m16
11) the widths of transistors m18 and m20
12) the widths of transistors m08 and m13
13) the widths of transistors m09 and m14
14) the widths of transistors m05, m10 and

m15
15) the widths of transistors m17 and m19
16) the width of transistor m01
17) the width of transistor m04
18) the multiplication factors of transistors

m10 and m15

From the matching groups it is evident that
channel widths and lengths of all transistors
are optimized in addition to the multiplication
factors of transistor m10 and m15.
There are also 9 corners involved in the circuit
evaluation.
There are 11 design goals the optimization
algorithm must fulfill. These are:
- Maximum current consumption 0.48mA
- Maximum common mode feed-back offset

180mV
- Minimum output swing 2.6V
- Minimum open loop gain 61dB
- Minimum unity gain frequency 90MHz
- Minimum phase margin 75º
- Minimum gain margin 13dB
- Maximum overshoot 0.3%
- Maximum settling time 11ns
- Minimum slew rate 13MV/s

Each design goal is checked with a suitable
measurement. Combined with the number of
corners this means the cost function consists of
99 criterion functions. All trade-off weights
are set to 0 and all penalty weights are set to 1.

Now the optimization problem has been
introduced it is time to see the results.
For the sake of clarity only 5 matching group
cost profiles out of the 18 will be shown.
There are the matching groups 8, 12, 13, 16
and 18.
Figures 5-9 show the cost profiles of the cost
function for the chosen axes of the parameter
space. On each figure there are the profiles of
the nine separate corners (thin lines) together
with the complete cost function (bold line).
As expected the cost function profiles are not
exactly quadratic parabolas. Nevertheless it is
still notable that they are quite smooth and
near the optimal parameter values they are
remarkably quadratic-like, specially in the
neighborhood of the cost function minimum.
This seems to imply that the relationship
between the cost function in the measurement
space and the cost function in the parameter
space becomes linear in the vicinity of the cost
function minimum but additional research
would be needed to shed more light on the
subject.

Figure 5: The cost profiles as functions of the
matching group 8.

The profiles in figures 5,6 and 7 are
reasonably close the predictions. There is only
the question about the spikes that are present
on the otherwise smooth curves. Before
delving into those it is noteworthy  to have a
look at figure 8. In this figure the profiles are
full of spikes. A careful analysis of the



measurement values near the spikes revealed
that the spikes are caused by numerical noise
that should have been foreseen.

Figure 6: The cost profiles as functions of the
matching group 16.

The main reason for the spikes is the far too
tight overshoot design goal. With such a
pressing goal it is normal that the circuit will
hover just below the required performance. In
such a situation any numerical error in the
measurement computations can result in a
worse than required performance causing the
observed spikes. In figures 5, 6 and 7 the
measurements were well clear of the goal
threshold so there is a limited number of
spikes. In the case of figure 8 on the other
hand the circuit hovers right on the goal
threshold with the result that the cost profile is
extremely noisy. When the spikes are taken
into account it can be seen that even the cost
profile in figure 8 is reasonably like the
profiles in figures 5, 6 and 7.
The remaining cost profile in figure 9 differs
from the others in one point. It is not smooth.
On this figure the cost profile is the function of
the multiplication factor of transistors m10 and
m15. Since the multiplication factor is an
integer value the steps in the cost profile are
expected. Non-smooth cost functions are still a
major problem for optimization algorithms
[10-13] so it is remarkable that the
optimization algorithm  [8,9] successfully
converged to the minimum with little trouble.

Figure 7: The cost profiles as functions of the
matching group12.

Figure 8: The cost profiles as functions of the
matching group 13.



Figure 9: The cost profiles as functions of the
matching group 18.

5. Conclusions

The evidence presented in this paper leads to
several conclusions.
First, the cost function in the measurement
space is shown analytically to limit to a
quadratic parabola. This is due to the
formulation of the cost function [1,2] and the
presence of a large number of corners and
measurements needed for a robust circuit
design [1-4]. Even if the relationship between
measurement space and parameter space cost
functions is highly nonlinear this result can
still prove highly useful.
Second, the cost function of a real-world
integrated operational amplifier was studied.
The cost function profiles showed a general
smoothness while in the vicinity of the
minimum the cost function profile displayed a
near quadratic shape. This seems to imply that
the relationship between measurement space
cost functions and parameter space cost
functions tends to become linear in the vicinity
of the minimum. If proved true this would be
in itself a most remarkable result but at this
stage it is still too early to draw a definite
conclusion. Additional research is needed to
shed more light into this subject.
Third, the quadratic shape of the cost function
in the vicinity of the minimum suggests the

development of an optimization algorithm that
could exploit such cost function properties.
The fact that the quadratic shape is present
only in the vicinity of the minimum a multi-
stage optimization algorithm is needed. Multi-
stage optimization algorithms have been
investigated in the past [14-18] but
unfortunately the research was centered on the
algorithms themselves without delving into the
properties of the underlying cost functions. It
would be expected that the exploitation of the
quadratic near-minimum cost function shape
could help the convergence of optimization
algorithms. To build such a multi-stage
optimization algorithm suitable basic
optimization algorithms would have to be
chosen first, then an adequate algorithm for
dynamically switching to the appropriate
optimization method based on the cost
function properties would have to be
developed.
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