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1. Introduction. Solving unconstrained optimization problems minx∈Rn f(x), f : Rn → R is an

important issue in engineering design. Since most tools used for calculating the value of the cost function

f(x) provide no gradient information or this information is unreliable or incomplete, one must resort to

utilizing direct search techniques. Direct search is currently going through a renaissance due to many

general convergence results published for various algorithms in the last 10 years (see [1], [2], and [3] for

an overview). The ideas from [4] and [5] seeded the definition and the convergence theory for the class of

pattern search methods (PS) [6]. Two more general convergence theories for unconstrained optimization

followed: global convergence framework for derivative free optimization methods (GCF) by Lucidi and

Sciandrone [7], which emerged as an attempt to unify convergence theories for pattern search and line

search (LS) [8], and grid-based search (GBS) [9] as an extension of PS.

All of the above mentioned methods are descent methods meaning that they produce a sequence of

points with nonincreasing cost function value. The goal towards which all these methods strive is to find

some point in the search space where the gradient of the cost function is 0 regardless of the initial point

provided to the algorithm. In an iteration the cost function value is probed at a set of points lying on

rays emanating from the current point. Based on the results of this search the current point and possibly

some step information is updated upon which some finite process can be executed in order to find further

decrease in the cost function value. The aforementioned steps are iterated until some stopping criterion

is met. The vectors that define the rays must fulfill certain conditions. In case of PS and GBS the

conditions are based on the notion of a positive base. In the GCF a somewhat different and more general

requirement is imposed upon the vectors. It was shown in [7] that positive bases fulfill this requirement.

A major restriction regarding the set of search directions in PS is that they must be a member of a

finite set, thereby limiting the capabilities of the algorithm to adapt to the fitness landscape by updating

the search directions. Another limitation applies to the step length and requires it to be rational. These

two restrictions guarantee that all probed points lie on a rational lattice, which is refined as the search

advances. This underlying algebraic structure is the key to the convergence proof in [6].

GBS is an extension of PS. The first major improvement over PS is the milder algebraic structure

imposed on the iterates, i.e. the set of available search directions can be infinite. It allows construction of
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algorithms with finite termination properties on quadratics [10] that still keep the robustness of pattern

search. The second improvement is the possibility to execute some finite process at the end of an iteration

that attempts to find further decrease in cost function value thus providing the possibility to incorporate

other minimization strategies to accelerate the search.

This paper deals with the properties of GBS viewed from the perspective of convergence conditions

set forth by Lucidi and Sciandrone. The convergence properties of GBS are shown to be a direct result

of the GCF convergence theorem thus proving that GBS is just another special case from the class of

methods covered by GCF.

In the following sections the extended global convergence framework based on [7] is presented. An

overview of properties of positive bases is given and the feasibility of a sequence of ordered positive

bases with varying cardinality is demonstrated. Grid-based search algorithms are presented and their

properties are demonstrated to fulfill the requirements of the extended global convergence framework.

The requirements on the sequence of ordered direction sets used by GBS are simplified by removing the

requirement of structural equivalence.

Notation. Let |A| denote the cardinality of A, ‖x‖ the euclidean norm of x, and Lf (x) = {y :

f(y) ≤ f(x)} the level set of f(x). Let o(x) be a function for which limx→0
o(x)

x = 0. R, Z, Z+, and Q

denote real, integer, positive integer, and rational numbers, respectively.

2. An overview of GCF. All convergence properties of algorithms conforming to GCF are valid

when f(x) is continuously differentiable.

Optimization algorithms conforming to GCF utilize a set of search directions in order to explore

the search space and drive their decisions. The following definitions establish the notion of an ordered

direction set and a feasible sequence of ordered direction sets.

Definition 2.1. An ordered direction set is an ordered set of vectors

P = {pi : pi 6= 0, i = 1, ..., r}

Definition 2.2. A feasible sequence of ordered direction sets {Pk}, is such that
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max
k
|Pk| = N < ∞,

and for any given sequence of points {xk}

lim
k→∞

‖∇f(xk)‖ = 0

if and only if

lim
k→∞

|Pk|∑
i=1

min(0,
∇f(xk)T pi

k

‖pi
k‖

) = 0

where pi
k denotes the i-th vector from the k-th element of the sequence {Pk}.

Note that all Pk have the same cardinality according to [7]. Sets of search directions utilized by

positive basis pattern search and rank ordered pattern search [11] are feasible. Further, any bounded

sequence of direction sets of the same cardinality with every cluster point positively spanning Rn, is

feasible. See [7] for the proof.

The set of global convergence conditions for derivative free unconstrained optimization algorithms is

given by the following theorem which is an extension of the convergence theorem from [7] in the sense

that it doesn’t require the same cardinality for all ordered direction sets:

Theorem 2.3. Suppose that there exists a compact set C0 such that the level set Lf (x0) ⊆ C0. Let

A denote a derivative free unconstrained optimization algorithm, A(x0) = {xk} the sequence of points

produced by A starting from the initial point x0 and {Pk} a feasible sequence of ordered direction sets. If

the following conditions hold:

1. the sequence of function values at points produced by A is nonincreasing.

f(xk+1) ≤ f(xk), (1)

2. for every pair (k, i), k ∈ Z+, i ∈ {1, ..., |Pk|}, there exists an index hi
k and a scalar ξi

k > 0, such

that

f(xhi
k

+ ξi
kpi

k) ≥ f(xhi
k
) + o(ξi

k‖pi
k‖); (2)

lim
k→∞

|Pk|∑
i=1

ξi
k‖pi

k‖ = 0; (3)
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lim
k→∞

|Pk|∑
i=1

‖xk − xhi
k
‖ = 0. (4)

Then,

lim
k→∞

‖∇f(xk)‖ = 0. (5)

Proof. We proceed by a different argument than Lucidi and Sciandrone [7]. Our argument is inspired

by [9].

From (2) it follows for all i = 1, ..., |Pk|:

f(xhi
k

+ ξi
kpi

k)− f(xhi
k
) =

∫ ξi
k

0

(∇f(xhi
k

+ tpi
k)−∇f(xhi

k
) +∇f(xhi

k
))T pi

kdt =

= ξi
k∇f(xhi

k
)T

pi
k + Ei

k ≥ o(ξi
k‖pi

k‖) (6)

Ei
k =

∫ ξi
k

0

(∇f(xhi
k

+ tpi
k)−∇f(xhi

k
))T pi

kdt

Due to (1) all iterates xk lie in Lf (x0) ⊆ C0. Since C0 is compact and f(x) is continuously differen-

tiable, ∇f(x) is Lipschitz continuous on Lf (x0) with Lipschitz constant C.

‖∇f(y)−∇f(x)‖ ≤ C‖y − x‖

Now we can see that Ei
k is bounded.

|Ei
k| ≤

∫ ξi
k

0

Ct‖pi
k‖2dt =

1
2
C(ξi

k‖pi
k‖)2 i = 1, ..., |Pk| (7)

By joining (6) and (7) we get

ξi
k∇f(xhi

k
)T

pi
k +

1
2
C(ξi

k‖pi
k‖)2 ≥ o(ξi

k‖pi
k‖) i = 1, ..., |Pk| (8)

Due to (1) the sequence {xk} belongs to the compact level set C0 ⊇ Lf (x0) and thus admits at least

one cluster point. Let x∞ be any cluster point of {xk}. There exists an infinite set of indices K1 ⊆ Z+

such that:

lim
k→∞,k∈K

xk = x∞ (9)

Since the cardinality of any ordered direction set from the sequence {Pk} is bound from above, there

exist an infinite subsequence of indices K2 ⊆ K1 such that |Pk| = N1 ≤ N for all k ∈ K2. Since all
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pi
k/‖pi

k‖ belong to a compact set (n dimensional sphere), there exists an infinite subsequence of indices

K ⊆ K2 such that

lim
k→∞,k∈K

pi
k

‖pi
k‖

= pi
∞ i = 1, ..., N1 (10)

By looking at (3), (4), and regarding the fact that ξi
k > 0, it is obvious that

lim
k→∞

max
i=1,...,|Pk|

ξi
k‖pi

k‖ = 0, (11)

lim
k→∞

max
i=1,...,|Pk|

‖xk − xhi
k
‖ = 0. (12)

Now take the limit of (8) as k →∞, k ∈ K. Considering the definition of o(x), and (11) we get

lim
k→∞,k∈K

∇f(xhi
k
)T pi

k

‖pi
k‖
≥ 0 i = 1, ..., N1.

By considering (10), (12), and continuity of ∇f(x)

∇f(x∞)T
pi
∞ ≥ 0 i = 1, ..., N1.

Obviously also

N1∑
i=1

min(0,∇f(x∞)T
pi
∞) = 0.

According to Definition 2.2 we have

‖∇f(x∞)‖ = 0.

Since x∞ is any cluster point of {xk}

lim
k→∞

‖∇f(xk)‖ = 0.

Note that Theorem 2.3 guarantees that the gradient at the calculated iterates approaches 0 as the

number of iterations approaches infinity. However there is no guarantee that the sequence of iterates

{xk} will converge.
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3. Positive bases and GCF. Some basic information regarding positive bases and their relation

to GCF is given. An interested reader can find details in [12]. Positive bases play a key role in defining

the sets of points examined by grid-based search algorithms.

Definition 3.1. The set of vectors {a1, ..., ar} is positively independent if none of its members can

be written as a nonnegative linear combination of the others.

Definition 3.2. The positive span of a set of vectors P = {a1, ..., ar} is a set of vectors {a : a =

c1a1 + ...+ crar, c1, ..., cr ≥ 0}. P is a positive base for Rn if it is positively independent and its positive

span equals Rn.

Lemma 3.3. If P is a positive base for Rn then n + 1 ≤ |P| ≤ 2n.

The interested reader can refer to [12] for a proof.

Lemma 3.4. Any sequence of ordered positive bases {Pk} where |Pk| = r ≥ n+1 where all directions

are bounded (‖pi
k‖ ≤ M, i = 1, ..., r) and all cluster points of the sequence positively span Rn is feasible.

The proof can be found in [7].

Lemma 3.5. Any sequence of ordered direction sets {Pk}, n + 1 ≤ |Pk| ≤ N , with every direction

satisfying ‖pi
k‖ ≤ M and all cluster points being a positive base for Rn is feasible.

Proof. We begin by splitting the sequence {Pk} in subsequences containing ordered direction sets of

the same cardinality

{Pk} = {Pk}k∈K1 ∪ ... ∪ {Pk}k∈Kj .

Since {Pk} is infinite at least one of the subsequences obtained by splitting {Pk} is infinite. Let {Pk}k∈Kl

be any such infinite subsequence. Due to boundness of its members it admits at least one cluster point.

Since all cluster points of {Pk} and therewith {Pk}k∈Kl
positively span Rn the subsequence is feasible

(Lemma 3.4). By taking into account the fact that {Pk}k∈Kl
is any such infinite subsequence, the

sequence {Pk} is feasible.

Definition 3.6. Two ordered direction sets V = {vj} and W = {wj} are structurally equivalent in

Rn if and only if |V| = |W|, and

i = n + 1, ..., |V| vi =
n∑

j=1

βijvj ⇔ wi =
n∑

j=1

βijwj
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The notion of structural equivalence is used along with several other requirements by GBS to guar-

antee that the positive bases in the sequence don’t become arbitrarily ”bad” (i.e. all cluster points of the

sequence are positive bases for Rn).

4. Grid-based search. The basic idea of grid-based search is to look for grid local minimizers on

consecutive grids.

Definition 4.1. A grid is a set of points defined by origin y, rational positive base P = {pi, i =

1, ..., r}, and step length h

G(y,P, h) = {x : x = y + h
r∑

i=1

αip
i, α1, ..., αr ∈ Z}

The notion of a grid makes sense only if all p ∈ P are rational (p ∈ Qn). Rationality ensures that the

intersection between any grid and any bound subset of Rn is finite. It also represents the key element in

the finiteness proof of the inner loop for GBS and PS. Grid-based search algorithms use positive bases to

explore the search space. The main idea is to produce a sequence of grid local minimizers with increasing

grid resolution.

Definition 4.2. A grid local minimizer x̌ ∈ G(y,P, h) is a point where

f(x̌ + hpi) ≥ f(x̌) i = 1, ..., |P|

The core of the algorithm is the finite search for a grid local minimizer in n dimensional space (step

2). The proof of finiteness for step 2 can be found in [9] and follows the same argument as in [5] and [6].

After a grid local minimizer is found an arbitrary finite search is conducted (step 3) in order to improve

the function value found in step 2. The better one of the two results (grid local minimizer, outcome of

the finite search process) becomes the new iterate and also the origin of a new grid defined by a possibly

new positive base and updated step length parameter (steps 4, 5, and 1).
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Grid-based search

Set grid counter k = 1 and iteration counter j = 1.

Set initial grid origin y1 and initial point x1 to x0.

while (stopping criterion false) do

1. Chose step a length parameter hk and a positive base Pk = {pl
k :

l = 1, ..., ck}. Set i = 1 and q = 0.

2. while (q < |Pk|) do

a) Evaluate f(x) at a finite number of points on the grid

G(yk,Pk, hk), including but not limited to xj + hkpi
k.

b) If some point x∗ with f(x∗) < f(xj) is found, set xj+1 = x∗,

j = j + 1, and q = 0. Otherwise increment q.

c) i = i + 1.

d) If i > |Pk|, set i = 1.

end

3. Execute a finite process resulting in point zk.

4. Let xj+1 = yk+1 =


xj f(zk) ≥ f(xj)

zk f(zk) < f(xj)
5. j = j + 1, k = k + 1.

end

5. Grid-based search in GCF. We start by listing the conditions imposed on the grid-based

search algorithm. Then we demonstrate that the sequence of positive bases in GBS is feasible. Finally

the relationship between GBS and GCF is shown.

According to [9] the function must be continuously differentiable and the sequence of iterates bounded.

The step length control is not specified in the algorithm. The only requirement imposed upon the step

length parameter h is that limk→∞ hk = 0.

The following lemma is about the feasibility of the sequence of ordered direction sets used in GBS.

The requirements imposed upon the directions are the same as in [9].

Lemma 5.1. If the sequence of ordered direction sets {Pk} used by GBS to search through Rn satisfies
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the following conditions

1. there exist a positive constant M such that ‖pi
k‖ ≤ M for all k, i = 1, ..., |Pk|,

2. there exist a positive constant κ such that |det(p1
k, ..., pn

k )| ≥ κ for all k,

3. there exists a finite subset of positive bases S from {Pk} such that all members of {Pk} are

structurally equivalent to some member of S,

then it is feasible.

Proof. Split the sequence of ordered direction sets into subsequences of ordered direction sets with

constant cardinality (same approach as in Lemma 3.5). Now take any such subsequence {Pk}k∈Kl
. Due

to the first requirement it is bounded and therefore admits at least one cluster point. Due to the second

requirement, the first n directions are linearly independent for all members of the subsequence {Pk}k∈Kl

and also for any of its cluster points. The third requirement assures us that all members and all cluster

points are structurally equivalent to some positive base from S. The second and the third requirement

therefore guarantee that all cluster points of {Pk}k∈Kl
are positive bases for Rn. Since this is valid for

any of the subsequences obtained by splitting {Pk}, Lemma 3.5 assures us that the ordered direction set

sequence {Pk} is feasible.

By looking back at Lemma 3.5 we can see that the requirements of Lemma 5.1 can be relaxed. We

only need to keep the boundness of the directions (requirement 1) and all cluster points of the sequence

must positively span Rn. There is no need to require any kind of structural equivalence. Although it is

a mild requirement it still limits the capability of the search directions to adapt to the local behavior of

the cost function.

Theorem 5.2. The sequence of grid local minimizers produced by a grid-based search algorithm {yk}

is such that limk→∞ ‖∇f(yk)‖ = 0.

Proof. Since the GBS requires the boundness of the sequence of iterates {xj}, there exists a compact

set C0 containing the whole sequence of iterates. The sequence of iterates and therewith the sequence of

grid local minimizers is nonincreasing due to steps 2b and 4 of the algorithm, so (1) from Theorem 2.3

holds and the level set Lf (x0) lies in the compact set C0.

Choose hi
k = k. Then the positive base Pk used to construct a grid with its origin at yk is actually
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the direction set that applies to yk+1 from the sequence of grid local minimizers {yk} when the sequence

is viewed through Theorem 2.3. This positive base is used to find a new grid local minimizer starting at

point yk. When a grid local minimizer is found (yk+1), we can say (by looking back at Definition 4.2)

f(yk+1 + hkpi
k) ≥ f(yk+1), i = 1, ..., |Pk|. (13)

Now say that o(x) = 0 and ξi
k = hk, i = 1, ..., |Pk|. It becomes obvious that (13) is an equivalent of (2)

from Theorem 2.3.

By recalling the fact that all directions appearing throughout the grid-based search as members of

ordered positive bases are bounded (‖pi
k‖ ≤ M , see proof of Lemma 5.1) and the fact that grid-based

search requires limk→∞ hk = 0, (3) of Theorem 2.3 also holds.

Finally since we chose hi
k = k, ‖yk − yhi

k
‖ = 0 and (4) of Theorem 2.3 holds.

Since all requirements of Theorem 2.3 are fulfilled and the sequence of ordered positive bases used in

GBS is feasible,

lim
k→∞

‖∇f(yk)‖ = 0.

6. Conclusions. The extended global convergence framework is a powerful tool for analyzing the

convergence properties of existing and developing new globally convergent derivative-free optimization

algorithms. The introduced extension allows the analysis of algorithms with varying cardinality of the

ordered search direction set. The extended global convergence framework could provide means for proving

the convergence of parallel algorithms where the number of search directions changes due to failures caused

by errors in the communication between the search processes or due to failures of the search processes.

The grid based search has been proved to conform to the extended global convergence framework.

Although the structural equivalence of all ordered search direction sets to some finite number of positive

bases is required by the original grid-based search algorithm, the extended framework allows any sequence

of positive bases with all cluster points being positive bases themselves, to be used. This removes the

structural equivalence requirement and enhances the flexibility of the family of grid-based search.
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