
ELEKTROTEHNIŠKI VESTNIK 78(5): 275-280, 2011
ENGLISH EDITION

On Selection in Differential Evolution

Iztok Fajfar, Janez Puhan, Sašo Tomažič, and Árpád Bűrmen

University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, 1000 Ljubljana, Slovenia
E-mail: iztok.fajfar@fe.uni-lj.si

Abstract. Differential evolution is a simple algorithm for global optimization. Basically it consists of three
operations: mutation, crossover and selection. Despite many research papers dealing with the first two, hardly any
attention has been paid to the third one nor is there a place for this operation in the algorithm basic naming
scheme. In the paper we show that employing different selection strategies combined with some random
perturbation of population vectors notably improves performance in high-dimensional problems.

Keywords: global optimization, direct search methods, differential evolution, heuristic

1 INTRODUCTION

Differential Evolution (DE) is a simple yet powerful
algorithm for global real parameter optimization
proposed by Storn and Price [1]. Through the last
decade, the algorithm has gained on popularity among
research as well as engineering circles due to its
extreme implementation simplicity and good
convergence properties. The DE algorithm belongs to a
broader class of Evolutionary Algorithms (EA), whose
behavior mimics that of the biological processes of
genetic inheritance and survival of the fittest. One
outstanding advantage of EAs over other sorts of
numerical optimization methods is that the objective
function needs to be neither differentiable nor
continuous, which makes them more flexible for a wide
variety of problems.
 A DE starts out with a generation of NP randomly
generated D-dimensional parameter vectors. New
parameter vectors are then generated by adding a
weighted difference of two population vectors to a third
vector. This operation is called mutation. One then
mixes the mutated vector parameters with the
parameters of another vector, called the target vector, to
obtain the so-called trial vector. The operation of
parameter mixing is usually called crossover in the EA
community. Finally, the trial vector is compared to the
target vector, and if it yields a better solution, it replaces
the target vector. This last operation is referred to as
selection. In each generation, each population vector is
selected once as the target vector.
 There exist several variants of the DE algorithm [2],
of which the most commonly used is DE/rand/1/bin,
which we explore in this paper. Before using the
algorithm, one has to decide upon the values of three
parameters affecting the behavior of a DE. The first is
the population size NP, the other two are control

parameters – a scaling factor F, and a crossover rate CR.
Choosing the values of these parameters is usually a
problem dependent task, which requires certain user
expertise. Researchers have attempted to tackle the
problem using several adapting and self-adapting
strategies to govern the values of the control parameters
F and CR [3, 4, 5] and even the population size NP [6,
7]. Others have proposed and studied different mutation
and crossover strategies [8, 9, 10]. No explicit research
work has been done so far on the third of the DE
operators, the selection, neither is there any intended
place in the algorithm variant naming scheme (i.e.
DE/x/y/z) for this operator. In this paper we investigate
how different selection schemes affect the behavior of
the DE algorithm, in particular its ability to escape the
local minima or stagnation. In addition to that we
applied what would in genetic algorithm be called
mutation, i.e. we randomly changed the population
vector parameters with a fixed probability. Since the
term mutation is already reserved in DE, we named this
operation a random perturbation.
 In the next section, we shortly describe the
functioning of the basic DE algorithm, in Section 3 we
propose a random vector perturbation and different
selection schemes that we investigate and, in Section 4,
we present some results on test functions.

2 A SHORT OVERVIEW OF DIFFERENTIAL

EVOLUTION

Consider the objective (criterion) or fitness function �:ℝ� → ℝ, where one has to find a minimum �� ∈ ℝ�
so that ∀
�� ∈ ℝ�: �(��) ≤ �(
��). In this case �� is called a
global minimum. It is rarely possible to find an exact
global minimum in real problems, so for practical
reasons one must accept a candidate with a reasonable
good solution.

Received November 25, 2011

Accepted December 8, 2011

276 FAJFAR, PUHAN, TOMAŽIČ, BŰRMEN

 In order to search for a global minimum, differential
evolution utilizes NP D-dimensional parameter vectors
xi,G, i=1,2,...,NP as a population in generation G. NP
does not change from generation to generation. The
initial population is chosen randomly and – if no prior
information about the fitness function is known – it
should cover the entire search space uniformly.
 During the optimization process, the new parameter
vectors are generated by adding a weighted difference
of two randomly chosen population vectors to a third
vector: vi,G+1=xr1,G+F·(xr2,G–xr3,G) with integer, mutually
different, random indices r1,r2,r3∈{1,2,...,NP}, which
must all be different from i as well, and a real constant

factor F∈[0,2]. This operation is called mutation, and
the thus obtained vector the mutated vector.
 The mutated vector parameters are then mixed with
another vector, the so-called target vector, in order to
produce a trial vector ui,G+1=(u1i,G+1,u2i,G+1,...,uDi,G+1)
where

���,��� = ����,���		if(����
(�) ≤ !)	or		� = ��
�($)%��,� 			if(����
(�) > !)	and	� ≠ ��
�($) ,
 																																			� = 1,2, … , ..		 (1)

 Here, randb(j) is the jth execution of the uniform
random generator with output ∈ [0,1], CR is user-
determined constant ∈ [0,1], and rnbr(i) is a random
index ∈ {1,2,...,D}. The latter insures that the trial
vector gets at least one parameter from the mutated
vector. This operation of parameter mixing is usually
called crossover.
 Finally, a selection is performed in order to decide
whether or not the trial vector should become a member
of generation G+1. The value of the fitness function at
the trial vector ui,G+1 is compared to its value at the
target vector xi,G using the greedy criterion. Only if the
trial vector yields a better fitness value than the target
vector, the target vector is replaced. Otherwise the trial
vector is discarded and the target vector retained.

3 MODIFICATIONS TO THE ORIGINAL DE

ALGORITHM

We focus our work on the stage of the DE algorithm
after crossover, i.e. on the stage when the trial vector is
already fully formed.

 The idea for our modification came first from a
simple observation that with a crossover rate CR
approaching 1 not much of the target vector survives in
its offspring (trial vector). In that sense one can argue
that the search direction from the target to the trial
vector can be as good (or as bad) as any other direction.
The hypothesis we want to test is that there might exist
some other (possibly better) candidate for replacement
than the target vector itself.
 In what follows, we propose and separately test three
different rules for selecting the candidate to compete
with the trial vector. We denote that candidate ci,G and
select it according to one of the three selection criteria:

 (2)

where d(·,·) denotes an Euclidean distance. Note that
there still exist cases where no appropriate candidate is
selected in which case the trial vector is discarded.
 Under criterion Cr1 one replaces, of all the vectors
that yield a worse fitness value than the trial vector, the
one that is geometrically closest to the target vector.
Note that this strategy, the same as the original
algorithm, always replaces the target vector as long as it
is worse than the trial vector. Otherwise, it seeks after
the candidate which is closest possible to the target
vector to replace it. As in the original algorithm, the
target vectors with a relatively bad fitness value will be
replaced more likely, while those with a better fitness
value will survive. In addition to that, however, some
near vector is moved to the place where the target vector
would move were it not worse than the trial vector. This
speeds up the clustering of the population members
around the members with generally better fitness values.
On one hand this can accelerate the convergence
significantly, on the other hand, however, there is a
danger of losing a necessary diversity too soon and thus
not finding a global solution.
 The approach with the criterion Cr2 is quite different
in that it searches for the candidate that is geometrically
closest to the trial vector. In that sense replacements are
made that favor smaller jumps and encourage searching
over less promising areas as well.
 The construction of the criterion Cr3 is not so
obvious at the first glance. Similarly to the original
algorithm and Cr1, we first check whether the target
vector is to be replaced, i.e. if the trial vector yields a
better fitness value than the target vector. Otherwise we
replace the first member of the first half of the
population whose fitness value is worse than that of the
trial vector. The idea behind that is to have a half of the
population evolve under the original DE rules while

Cr1: 0�,� = %�,� , ∃�:min� 3�4%�,� , %�,�56	∀�: �4��,���5 < �(%�,�) 	
Cr2 :0�,� = %�,� , ∃�:min� 3�4%�,� , ��,���56	∀�: �4��,���5 < �(%�,�) 	
Cr3: 0�,� = %�,� , ∃�: 8 � = $, �4��,���5 < �(%�,�)																																																									

	smallest	� ∈ =1,2, … >?
@ A : �4��,���5 < �4%�,�5, otherwise	 	

ON SELECTION IN DIFFERENTIAL EVOLUTION 277

accelerating the other half with further replacements.
Even these additional replacements are applied
asymmetrically with the members with a smaller index
affected more often. That way we wanted to induce as
little a change to the original method as possible, while
inducing a relatively strong drag on a limited number of
population members.
 Before going into experiments, let us introduce one
more tiny modification to the algorithm. It is interesting
to note that although the algorithm itself belongs to a
class of metaheuristics and stochastic optimization, the
randomness in the original concept is only used for the
selection of the vectors from which the mutated vector
will be formed and for mixing the mutated and target
vector parameters. The vector parameters themselves
are changing randomly only indirectly through the
mutation and crossover, and the obtained values are
limited to a set of linear combinations of parameters
already contained in a population. Some authors have
already introduced some more randomness into DE,
either directly by randomization of the vector
parameters [11, 12] or indirectly by randomizing the
algorithm control parameters F and CR [13, 14].
 In our study we decided simply to mutate every
single parameter of the trial vector with a fixed
probability just before the selection procedure takes
place:

���,��� = D����(�), if(����
(�) ≤ 0.05)���,���, otherwise																							,
 																					� = 1,2, … , ., (3)

where rand(j) is the call of the random generator that
returns the uniformly distributed values along the entire
jth axis of the parameter space. The constant probability
of 0.05 was obtained empirically by a few preliminary
test runs of the algorithm, which also indicated that the
uniform distribution over the whole parameter space
yielded somewhat superior performance compared to a
normal distribution around the current parameter value
often used in literature. We call this operation
perturbation.

4 RESULTS

4.1 Overall Performance

In order to get an overall picture and the first impression
of the impact of the three proposed selection strategies
and random vector perturbations, we carried out a
simple test. For testing purposes, fourteen standard
benchmark functions from [15] were selected, thirteen
high-dimensional (D=30) and one low-dimensional
(D=4) function. Then we randomly selected the three
parameters from the intervals NP∈{10,...,100},
F∈[0,1], and CR∈[0,1], and initialized a random
population of the NP parameter vectors lying within the
boundaries given for the test function in question. Next
we executed eight optimization runs of the 150,000

criterion function evaluations (CFEs) with the same
parameter values and initial vector population, but each
time applying either the original or one of the three
proposed selection schemes, once without and once with
a random perturbation. We repeated this 5,000 times for
each test function, each time with different control
parameter values and initial vector population. The
results are summarized in Table 1.

Table 1: Comparison of Different Modifications of the
Algorithm with the Original

Selection
method

Without
Perturbation

With Perturbation

50,000

CFEs

150,000

CFEs

50,000

CFEs

150,000

CFEs

Original – – 44.1/51.7 43.7/44.1

Cr1 53.5/43.4 45.1/48.0 69.9/26.9 63.1/29.0

Cr2 52.8/44.1 45.7/47.4 62.4/34.4 57.3/35.4

Cr3 61.4/34.6 53.0/37.1 75.2/20.6 68.5/20.5

 The fourteen pairs of the numbers in the table stand
for the seven different comparisons (each of the
modifications separately compared to the original) at
two different times of the algorithm run: after 50,000
CFEs and after 150,000 CFEs. The numerator
represents the percentage of cases in which the
corresponding modification yielded a better fitness
value (at the precision of 6 significant digits) than the
original, while the denominator speaks of the percentage
of cases in which the original method performed better.
The sum is generally smaller than 100, because in some
cases both variants gave the same result. The counting
was carried out over all runs regardless of the control
parameter setting or the selected test function. In real-
life problems, often the practitioner has little or no
knowledge about the fitness function and consequently
about the best control parameter settings. Therefore, it
seems that averaging over a range of different test
functions and control parameter settings, selected in the
Monte-Carlo manner is an appropriate measure of the
algorithm overall performance.
 In the table, the pairs of the numbers in the white
cells represent the state after 50,000 CFEs. We
conjectured that at that stage of optimization the
convergence is generally not yet fully reached.
Consequently those pairs of the numbers hint at the
convergence speed rather than at the overall ability to
find a global minimum.
 The numbers in the shaded cells represent the state
after 150,000 CFEs, when we assume that the number
of the cases reaching the final solution is considerably
larger than of those after 50,000 CFEs. Hence we
consider these results to reflect the ability of the
algorithm to find a good final solution.
 From the table one can infer some quite interesting
observations. Replacing – instead of target vector – the

278 FAJFAR, PUHAN, TOMAŽIČ, BŰRMEN

candidate closest to target (Cr1) or closest to trial vector
(Cr2) without using perturbation performed just slightly
better after 50,000 CFEs (1st column, 2nd and 3rd row,
respectively) and slightly worse after 150,000 CFEs
(2nd column, 2nd and 3rd row, respectively). That
implies that the more frequent replacements in both
cases speed up the convergence as expected but, in
general, they more often stuck in local minima or reach
stagnation in the end. That is, however, not the case
with the selection strategy using Cr3. This strategy
outperformed the original for almost twice more cases
after 50,000 CFEs and still remained much better after
150,000 CFEs (4th row, 1st and 2nd column,
respectively). It is important to note that with this kind
of modification the algorithm still performs more
replacements than the original one, which obviously
speeds-up the convergence. The main difference here is
that we perform these additional replacements only on a
limited number of the population members, the others
still undergoing the original selection scheme.
Technically, we can speak of two different schemes
running in parallel.
 Comparing the original method with and without
perturbations gives us no noticeable difference (1st row,
3rd and 4th column). As reasonably expected, random
perturbations slow down convergence to some extent
(1st row, 3rd column), but in the long run no variant
outperforms the other (1st row, 4th column). It is quite
interesting to note that while perturbation seems to have
no observable effect when applied to the original
algorithm, it improves the other three variants
noticeably. It seems that in these cases the perturbation
not only makes up for the loss of the population
variance – which might have occurred due a to too fast
convergence induced by more frequent replacements –
but also improves the overall performance. It seems that
the changed selection schemes and random
perturbations support each other. Nevertheless,
comparing the results of the selection criteria Cr1, Cr2,
and Cr3 with perturbation after 50,000 and 150,000
CFEs shows that in all the three cases, in the long run,
the original method compensates a little for the much
worse performance during the first part of the run. This
leaves us, possibly, some room for improvement by
balancing the factors that affect the convergence speed
and the rate of change in the population diversity.

4.2 A Closer Look

Let us now focus a little closer on the selection criterion
Cr3 combined with vector perturbation exhibiting the
best overall improvement in the previous analysis. In
order to get a more accurate picture, we made the same
comparisons as before, only this time for each test
function separately. The results are summarized in
Table 2. The table shows comparisons of the original
method with the original method with perturbation, and
with the selection criterion Cr3 with and without
perturbation. The numbers in normal writing represent

the state after 50,000 CFEs, while the ones in boldface
the state after 150,000 CFEs.

Table 2: Comparison of Different Modifications by Separate
Test Functions

Test Function

Modification Compared with the
Original Algorithm

Original

with

Perturbation

Cr3
Cr3 with

Perturbation

ƒ1 (Quadratic) 34.72/65.28
31.60/68.40

70.83/29.17
68.75/31.25

80.21/19.79
76.39/23.61

ƒ2 (Schwefel 2.22) 33.45/66.55
31.71/68.29

70.73/29.27
66.90/33.10

74.22/25.78
70.03/29.97

ƒ3 (Schwefel 1.2) 51.04/48.26
54.51/45.49

75.35/23.96
70.49/29.51

77.08/22.57
78.47/21.53

ƒ4 (Schwefel 2.21) 49.48/48.08
48.43/49.83

63.07/34.49
59.58/39.72

83.97/12.80
79.79/18.82

ƒ5 (Generalized
Rosenbrock)

49.83/50.17
52.96/47.04

58.19/41.81
56.10/43.90

77.00/23.00
73.87/26.13

ƒ6 (Step) 31.36/24.39
29.97/9.76

31.36/27.87
18.12/26.48

47.04/6.62
35.19/3.48

ƒ7 (Quartic noisy) 46.50/53.50
49.30/50.70

70.28/29.72
67.83/32.17

77.97/22.03
77.62/22.38

ƒ8 (Generalized
Schwefel 2.26)

57.14/42.86
58.54/29.62

49.83/50.17
36.59/58.19

82.58/17.42
78.75/11.15

ƒ9 (Generalized
Rastrigin)

50.69/48.96
49.65/43.40

66.67/33.33
57.64/39.24

80.90/19.10
79.17/15.28

ƒ10 (Ackley) 48.26/50.69
48.96/33.33

60.07/39.24
43.75/41.67

81.60/17.36
68.40/15.63

ƒ11 (Generalized
Griewank)

32.17/61.19
31.47/36.71

63.99/29.72
42.31/29.02

73.08/20.28
53.50/17.83

ƒ12 (Generalized
penalty function 1)

43.36/56.29
36.01/45.80

68.53/31.12
52.45/33.22

81.47/18.53
65.38/20.63

ƒ13 (Generalized
penalty function 2)

45.10/54.90
42.66/43.01

62.59/37.06
50.35/37.06

82.17/17.48
72.03/15.03

ƒ15 (Kowalik) 44.41/52.45
45.80/46.50

48.25/47.55
50.70/45.10

52.80/45.80
49.65/45.80

 The first and foremost important observation here is
that the modification combined with perturbation shows
a noticeable and consistently better performance in all
cases except for the Kowalik test function where there is
no observable difference. Again we see that perturbation
alone does not really improve performance of the
original method, two notable exceptions being the
Schwefel 2.26 and Step functions.
 The Schwefel function is somehow tricky in that the
global minimum is placed geometrically remote from
the next few best local minima. The original method
exhibits quite a good convergence at the beginning,
while later on perturbations help find a global minimum
as without them the original method would be stuck in a
local minimum (see the 1st column, Schwefel 2.26
function). Interestingly enough, modification without
perturbation in that case performs much worse than the
original method. This probably stems from the fact that
this method replaces candidates of one half of the
population excessively, thus additionally forcing the
population in one of the local minima. The modified
method with perturbation, however, performs much
better in this case.

ON SELECTION IN DIFFERENTIAL EVOLUTION 279

 The same goes for the step function. This function
too, poses some difficulties for the original algorithm
because it consists of many plateaus and discontinuities.
All points within a small neighborhood will have the
same fitness value, making it very difficult for the
process to move from one plateau to another.
Perturbations seem to help here significantly.

4.3 Parameter Impact

In our experiments so far we didn't pay any attention to
the actual control-parameter or population-size
selection. The values were picked up completely
randomly within the set intervals. In this section we
want to investigate the effect of different parameter
settings on the algorithm performance with the proposed
modifications. We compare the original algorithm to the
one using the selection scheme Cr3 with perturbation.
Although the focus here is on a single test function
(Generalized Schwefel 2.26) we should note that a
similar behavior was observed also elsewhere.
 We started by choosing the control parameter settings
most commonly found in literature, i.e. F = 0.5 and CR
= 0.9. Our experimenting showed that at these values
the best fitness (assuming a fixed number of 150,000
CFEs) is generally obtained at the population size NP =
40. The results in this section are obtained by changing
one of the three values while keeping the other two
fixed. The best fitness values were averaged over 25
independent runs.
 Fig. 1 shows that the original method completely
failed to reach the global minimum (at –12569.5) safe
for the lowest values of CR. Interesting, however, is that
the modification enables DE to find the global minimum
at lower and higher values of CR, but not at the values
around 0.7. A similar behavior can be observed in Fig.
2, only that here the improvement is somehow worse
only at the highest values of F.

 In Fig. 3, which depicts the inpact of the population
size, we can see that the major improvement is achieved
at lower population sizes. The large population size in
DE usually guarantees the larger probability of finding a
global minimum, and originally, the proposed
population size was NP = 10D [16]. Other sizes were
proposed later but also all considerably greater than the
fitness function dimensionality D. As seen from Fig. 3,
at larger population sizes our modification does not
bring any improvement over the original method
whatsoever. That is somehow expected since the DE
should be quite stable at larger NP. The problem
however is that the stability is of no great practical use
if after the relatively large number of CFEs the
algorithm is still very far from the actual solution. We
see one of the strongest values of our modification in
having instead of one large population many smaller
ones running in parallel which could bring together the
ability to actually find the global minimum and speed
up of convergence.

5 CONCLUSION

In the paper we studied different replacement schemes
in the DE algorithm combined with the additional
random perturbation of vector parameters. By
experimenting with a suite of standard test functions we
observed that only one replacement scheme provided
observably better results than the original algorithm. It

Figure 3: Impact of the population size.

Figure 2: Impact of the F control parameter.

Figure 1: Impact of the CR control parameter. The solid
line represents the results using the original algorithm
while the dashed line depicts the values obtained using the
Cr3 selection scheme with perturbation.

280 FAJFAR, PUHAN, TOMAŽIČ, BŰRMEN

was somehow surprising to observe that perturbation
doid not improve behavior of the original replacement
scheme while it improved all the others.
 Studying the performance of the replacement scheme
Cr3 combined with random perturbation showed quite
considerable improvement in all higher dimensional test
functions. We also saw that the improvement is greater
at certain values of the control parameters and
population sizes, i.e. at lower values of F and NP, and at
lower as well as higher values of CR. Especially
outstanding was the improvement in smaller population
sizes which could be useful in implementing parallel DE
algorithms using a number of smaller populations.
 One of the advantages of the approach proposed in
this paper is the fact that its intervention with the
original method does not interfere with any other
operation and can therefore be applied independently
and combined with many other approaches proposed in
literature.
 All in all, the beauty of the original DE algorithm is
its utmost implementation simplicity. Our research tried
not to stray away from this simplicity and we showed
that it is possible to improve the algorithm performance
by only changing the rule for replacing the population
members combined with simple random perturbation.
We believe that further work in this direction is
worthwhile.

ACKNOWLEDGEMENT

The research has been supported by the Ministry of
Higher Education, Science, and Technology of Republic
of Slovenia within the research program P2-0246 –
Algorithms and optimisation methods in
telecommunications.

REFERENCES
[1] R. Storn and K. Price, “Differential evolution – a simple and

efficient heuristic for global optimization over continuous
spaces,” J. Glob. Optim., vol. 11, pp. 341–359, 1997.

[2] K. Price, “An introduction to differential evolution,” in New
ideas in optimization, D. Corne, M. Dorigo, and F. Glover, Eds.
London (UK): McGraw-Hill Ltd., 1999, pp. 79–108.

[3] J. Brest, S. Greiner, B. Bošković and M. Mernik, “Self-adapting
control parameters in differential evolution: a comparative study
on numerical benchmark problems,” IEEE Trans. Evol.
Comput., vol. 10, pp. 646–657, 2006.

[4] J. Liu and J. Lampinen, “A fuzzy differential evolution
algorithm,” Soft Comput., vol. 9, pp. 448–462, 2005.

[5] D. Zaharie, “Control of population diversity and adaptation in
differential evolution algorithms,” in Proceedings of 9th
International Conference on Soft Computing, R. Matoušek, P.
Ošmera, Eds. Brno (Czech Republic): Mendel 2003, pp. 41–46.

[6] J. Brest and M. Sepesy Maučec, “Population size reduction for
the differential evolution algorithm,” Appl. Intell., vol. 29, pp.
228–247, 2008.

[7] J. Teo, “Exploring dynamic self-adaptive populations in
differential evolution,” Soft Comput., vol. 10, pp. 673–686,
2006.

[8] H. Y. Fan and J. Lampinen, “A trigonometric mutation operation
to differential evolution,” J. Glob. Optim., vol. 27, pp. 105–129,
2003.

[9] S. Das, A. Abraham, U. K. Chakraborty, and A. Konar,
“Differential evolution using a neighborhood-based mutation
operator,” IEEE Trans. Evol. Comput., vol. 13, pp. 526–553,
2009.

[10] D. Zaharie, “Influence of crossover on the behavior of
differential evolution algorithms,” Appl. Soft Comput., vol. 9,
pp. 1126–1138, 2009.

[11] Z. Yang, J. He, and X. Yao, “Making a difference to differential
evolution,” in Advances in metaheuristics for hard optimization,
Z. Michalewicz and P. Siarry, Eds.: Springer, 2007, pp. 415–
432.

[12] J. Olenšek, Á. Bűrmen, J. Puhan, and T. Tuma, “DESA: a new
hybrid global optimization method and its application to analog
integrated circuit sizing,” J. Glob. Optim., vol. 44, pp. 53–77,
2009.

[13] J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Žumer,
“Self-adapting control parameters in differential evolution: a
comparative study on numerical benchmark problems,” IEEE
Trans. Evol. Comput., vol. 10, pp. 646–657, 2006.

[14] S. Das, A. Konar, and U. K. Chakraborty, “Two improved
differential evolution schemes for faster global search,” in
Proceedings of GECCO, Washington D.C.: 2005, pp. 991–998.

[15] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made
faster,” IEEE Trans. Evol. Comput., vol. 3, pp. 82–102, 1999.

[16] R. Storn, “On the usage of differential evolution for function
optimization,” in Biennial Conference of the North American
Fuzzy Information Processing Society (NAFIPS), Berkeley:
1996, pp. 519–523.

Iztok Fajfar received his B.Sc., M.Sc., and Ph.D. degrees in
electrical engineering from the Faculty of Electrical
Engineering, University of Ljubljana, Slovenia in 1991, 1994,
and 1997, respectively. In 1991 he was researcher at the Jozef
Stefan Institute in Ljubljana. At the end of the same year he
was granted a research position at the Faculty of Electrical
Engineering, University of Ljubljana. Currently he holds the
position of an associate professor at the same faculty. He
teaches several introductory and advanced courses in
computer programming. He has also participated in several
industrial software projects. His research interests include
design and optimisation of electronic circuits.

Janez Puhan received his Ph.D degree in electrical
engineering from the Faculty of Electrical Engineering,
University of Ljubljana, Slovenia, in 2000. He is an assistant
professor at same faculty. His research interests include
modelling, simulation and optimization techniques in
computer-aided circuit design.

Sašo Tomažič is a professor at the Faculty of Electrical
Engineering, University of Ljubljana, Slovenia. He is the Head
of the Laboratory of Communication Devices and the chair of
the Telecommunication Department. His work includes
research in the field of signal processing, security in
telecommunications, electronic commerce and information
systems.

Árpád Bűrmen received his Ph.D. degree in electrical
engineering from the Faculty of Electrical Engineering,
University of Ljubljana, Slovenia, in 2003. Currently, he is an
associate professor at the same Faculty. His research interests
include continuous and event-driven simulation of circuits and
systems, optimization methods and their convergence theory
and applications, and algorithms for parallel and distributed
computation. He is one of the principal developers of the
SPICE OPUS circuit simulator and has published over 20
papers in peer-reviewed journals.

