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Abstract - SPICE is a widely used tool for
simulation of analog circuits. Accurate models of
devices are crucial for obtaining realistic results from
the simulation. Many devices must still be modelled
with subcircuit models in order to achieve sufficient
accuracy. Parameter values for subcircuit elements
are determined by optimisation. Use of SPICE OPUS
optimisation capabilities for model parameter
identification is presented. The performance of the
simple genetic algorithm when used for model
parameter identification is evaluated. The effect of
elitism on convergence and results is examined for 9
cases of parameter identification and 2 benchmark
optimisation cases. The performance of the simple
genetic algorithm is compared to the performance of
the simplex algorithm. Finally conclusions and
guidelines for future work are presented.

1 Introduction
SPICE [1] is the de-facto standard for analog circuit

simulation. As every other CAD tool SPICE too is
subject to the known proverb »garbage in-garbage out«.
This means that without accurate models it is impossible
to obtain realistic simulation results that can be used in
the process of circuit design.

Device models are built into the SPICE simulator core
for most of the semiconductor devices. Together with
model parameters these device models provide the
information about behaviour of a particular part or
device in the circuit.

These built-in device models however do not always
provide sufficient accuracy for simulation of many parts
widely used in electronic circuits. Consider for example,
the Zener diode, the power MOS FET or the SCR. There
is no built-in device model available for them. The
solution to this problem is to model a particular part with
a subcircuit that represents the part’s behaviour.

Model parameter identification is used to obtain the
values of model parameters from the data provided by
the part manufacturer in the datasheet. There are two
criteria by which the optimisation method used for
parameter identification is evaluated:

- the quality of the result (i.e. how well the model
and the datasheet agree)

- time required to obtain the result
Although a wide variety of optimisation techniques

exist, only a few can be successfully applied to circuit
optimisation as shown in [2].

This paper deals with the simple genetic algorithm
(SGA) [3] and the effect of elitism on convergence of the
model parameter identification. Genetic algorithms have
successfully been applied to a wide variety of
optimisation and identification problems. Their main
advantage is the fact that they avoid getting caught in
local minima. The main handicap of genetic algorithms
is their slow convergence. One way to improve this is to
add elitism to the genetic algorithm.

The SGA is implemented as one of the available
optimisation methods in SPICE OPUS and some
encouraging results on benchmark circuit optimisations
were reported [2].

In the following sections the list of some of the
existing SPICE parameter identification systems is
given. Then the modifications to the SPICE
programming language NUTMEG and the optimisation
subsystem in SPICE OPUS are described. A short
description of benchmarks is given. The results obtained
from constrained simplex method, SGA and SGA with
elitism are compared. Finally the conclusions and
guidelines for future work are presented.

2 State of the Art
Many software packages are available for generating

SPICE models. Packages included with commercial
SPICE simulators like IsSPICE [4] or PSPICE [5] rely
on a few characteristic points from the datasheet and so
called »rule of thumb« for determining the parameter
values for subcircuit elements. MODPEX [6] from
Avant! uses some optimisation techniques for parameter
identification but there is no support available. Specific
software is available for parameter extraction for various
models like the BSIM MOS models [7].

Generally, whenever a new model for some real-world
device or phenomenon is devised, an article dealing with
model parameter extraction for that specific model is
published along with custom tailored software that is
capable of extracting parameters from measurement
results for that specific model.

In this article we present a unified approach to
parameter identification for various real-world device
models in SPICE. The approach is based on the SPICE
OPUS simulator and its optimisation capabilities. SPICE
OPUS is an enhancement of the SPICE3f4 simulator
including improved scripting language, optimisation
facilities and mixed-mode XSPICE extensions. It was
developed by the Group for Computer Aided Circuit
Design at Faculty of Electrical Engineering, University
of Ljubljana. The Windows95/98/NT, LINUX and
SOLARIS release can be downloaded from
http://fides.fe.uni-lj.si/spice.
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3 Methods
In order to guide the optimisation procedure a cost

function must be defined. Since the original Berkeley
SPICE scripting language (NUTMEG) doesn’t provide
sufficient means for describing an arbitrary cost function
the following modifications were made:

- Interpolation of vectors from different plots had
to be fixed since it was broken in the original
Berkeley release of SPICE.

- Cursor functions for performing measurements on
simulation results in similar manner as on digital
storage oscilloscopes were added.

- Some simple functions like min(), max(), sum(),
etc. were implemented as NUTMEG internals in
order to make vector manipulation easier.

- Handling of vectors was thoroughly revised and
fixed.

- Access to model and instance parameters was
simplified and is now handled by the let
statement in the same manner as other vectors
are.

- Since the DC characteristic is one of the most
common sources of information in the datasheets
DC analysis in SPICE OPUS was improved in
order to facilitate logarithmic sweep and arbitrary
circuit parameter sweep.

The ‘optimize’ command syntax was slightly extended
in order to provide following features:

- Logarithmic compression of search space for a
parameter was implemented in the ‘optimize’
command to aid optimisation convergence for
parameters whose explicit constraints span
several decades.

- Elitism was added to the SGA.

According to past research dealing with application of
various optimisation techniques to simulated circuits [2]
only constrained simplex and Hooke-Jeeves search from
the family of direct search methods [8] have given
satisfactory results in conjunction with a circuit
simulator on benchmark circuits. Since Hooke-Jeeves
search requires an initial guess it is somewhat less
appropriate for parameter identification. Therefore only
constrained simplex [9] search is considered in this
article and its performance is compared to the one of the
SGA without elitism and SGA with elitism.

Since constrained simplex search and SGA both start
with a random set of points (initial simplex, initial
population) only explicit constraints are sufficient for
starting the search.

For the constrained simplex search the number of
points in the simplex was set to twice the number of
parameters. Optimisation was stopped when the relative
simplex size was less that 0.1%.

For the GA Gray encoding was used to encode
parameter values in chromosomes. Population size was
twice the number of parameters. Chromosome length
was set to 4 bytes per parameter (more than 4⋅109

discrete levels per parameter’s range). Probability of

mutation was set to 0.02 and crossover probability was
set to 0.6.  A fixed number of generations was evolved
for each test example.

Elitism was introduced into the population by
automatically copying the best individual into the next
generation. In order to avoid getting caught in local
minima a higher probability of mutation (0.05) was used
for the SGA with elitism.

The fitness of individuals was based on the cost
function in such manner that the fitness of the individual
with the lowest cost function value was 5 times greater
that the fitness of the individual with the highest cost
function value in the population.

4 Results
The results are summarized in Table 1. For each test

example the number of cost function evaluations is given
along with the lowest cost function value found by the
method.

4.1 Shottlky diode wih guard ring
SB020 Shottky diode forward characteristic was fitted

to the model in Figure 1. Rs is a temperature dependent
resistor. Parameters to be identified were IS, N, EG and
XTI for both diodes and Rs and TC1 for the resistor. EG
and XTI were restricted to a band around typical values
of a Si junction diode for Dguard (EG=0.8-1.6, XTI=2.9-
3.1) and of a Shottky diode for D (EG=0.3-0.8, XTI=1.9-
2.1). Explicit constraints on other parameters were set to
a wider range. Logarithmic compression was applied to
all parameters except TC1 of the resistor.

Figure 1: model used for fitting the DC characteristic of
a Shottky diode with a guard ring.

The cost function was defined as the root mean square
error calculated as the difference between values
obtained from the model and desired values. Since there
are two curves in the forward characteristic (one for each
temperature) the cumulative cost function was defined as
the sum of root mean square errors of individual curves.
180 generations were evolved. The quality of the

result from the SGA with elitism is slightly worse than
the the quality of the result from the constrained simplex
method. SGA without elitism delivered significantly
worse performace than SGA with elitism.

4.2 Zener diode breakdown
Differential resistance in breakdown of various

BZX84 Zener diodes was modelled (2.7V, 5.6V, 10V,
22V, 36V and 51V). The model used is shown in Figure



2. In our examples only two parallel branches were used.
Rsi, Vi and Ni (for diode Di) in each branch along with
Rs were identified. Logarithmic compression was applied
to all parameters. Since the differential resistance values
are given in log scale the error for the cost function was
calculated in the same manner as in previous example
except that the the difference between log10 values was
used.

Figure 2: Zener diode differential resistance model.
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Figure 3: result of model parameter identification for the
BZX84 Zener diode family for SGA with elitism. Bright
curves represent results obtained from models.

For the SGA test 200 generations were evolved. In all
6 cases the SGA performs worse than constrained
simplex. However with the addition of elitism the
behaviour of SGA improves. The result from the SGA
with elitism is in 2 of the Zener diode fitting cases
slightly worse, in 3 cases the same and in one case even
better than the result obtained from the constrained
simplex method.

4.3 MOS level 3
MOS level 3 model parameters were identified for two

MOS transistors (1µm and 0.25µm). The measured data
were obtained from [10]. Explicit constraints constraints
were the same as in [10].

For all parameters except VTO, ETA, THETA and
KAPPA logarithmic compression was used. For the

0.1µm MOS parameter XJ was fixed to 2⋅10-7. For the
0.25µm MOS only the ID(VDS) curves were used although
the ID(VGS) curve was also available.

Since measurements comprised multiple ID(VGS)
curves the same definition of cumulative cost function
was used as for the Shottky diode example.

400 generations were evolved for both examples in the
SGA test. The performance of the SGA with elitism is
somewhat worse than the performance of the constrained
simplex method but still shows significant improvement
over SGA without elitism.

4.4 Linearisation of an amplifier
To additionally test the performance of the SGA with

elitism two further examples were considered. Both of
them are described in [2].

The first one is the linearisation of a transistor
amplifier. For this example the population size was
increased to 10 (since twice the number of parameters
was not sufficient for a population) and 15 generations
were evolved.

The quality of the result obtained by SGA is almost
identical as the quality of the result obtained by the
constrained simplex method. Again elitism significantly
improved the convergence of the SGA.

4.5 Triangle to sine converter
All settings are the same as in [2] except that

logarithmic compression is added to all parameters.
In a SGA run 250 generations were evolved. This

time SGA delivered acceptable performance when
compared to constrained simplex method. Elitism
slightly improved the result although plain SGA
performed well enough.

5 Conclusions
The use of SGA with elitism in SPICE OPUS for

model parameter identification was demonstrated on 9
examples. The results show that inferior convergence
properties of SGA can be improved by adding a simple
modification such as elitism. SGA with elitism exhibited
significant improvement over SGA and its performance
could be compared to that of the constrained simplex
method.

Zener diode reverse characteristic and triangle to sine
converter example are essentialy a search for a piecewise
linear approximation to desired response. Since in both
cases SGA with elitism performed well it seems that
SGA is suited for cases where piecewise linear fit to
experimental data is sought.

When dealing with cost functions with many local
minima (MOS fitting) SGA with elitism finds a solution
which is usually a local minimum. This fact suggests the
implementation of a mechanism for trading convergence
speed for capability of avoiding local minima. This could
be achieved by randomly limiting the direct transfer of
the best individual to the next generation.



Cost function evaluations Minimal cost function found
Test Case No. of

parameters Constrained
simplex

SGA SGA+
elitism

Constrained
simplex

SGA SGA+
elitism

Zener 2.7 7 1135 2814 2614 0.0274 0.1201 0.0384
Zener 5.6 7 1681 2814 2614 0.0405 0.1434 0.0495
Zener 10 7 893 2814 2614 0.0809 0.0812 0.0450
Zener 22 7 840 2814 2614 0.0450 0.0452 0.0450
Zener 36 7 892 2814 2614 0.0204 0.0204 0.0204
Zener 51 7 743 2814 2614 0.0245 0.0300 0.0245
Shottky SB020 10 2584 3440 3620 0.0837 0.1597 0.0900
MOS 1um 8 3375 5616 5266 94.55u 636.0u 244.9u
MOS 0.25um 9 2954 6318 5968 83.02u 627.9u 181.0u
Amp. Lin. 2 74 160 145 0.8737m 1.414m 0.8790m
Triangle to sine 12 2829 6024 5774 4.328u 6.712u 4.944u

Table 1: performance comparison for constrained simplex, SGA and SGA with elitism.

SGA in SPICE OPUS could be improved further by
implementing adaptive mutation rate control which
would increase the mutation rate if no change in cost
function was detected for a certain number of
generations. The mutation rate would decrease if the
cost function was changing rapidly.

The addition of elitism increased the speed of
convergence (or, in other words, the result obtained by
SGA with elitism for a fixed number of generations is
significantly better than the result obtained by plain
SGA). The number of cost function evaluations
required to obtain a result comparable to the result of
constrained simplex search is still 2-3 times greater
than with constrained simplex.

SGA with elitism is no substitute for the constrained
simplex method which has been from our experience
the absolute winner in virtually all optimisation cases
involving circuit optimisation based on results from a
simulator. One should consider SGA as a
preprocessing step for other methods. From the
population distribution in parameter space the feasible
regions for search could be identified. Then other
methods could be employed to find minima in those
regions.
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