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Abstract

SPICE is a widely used tool for simulation of analog
circuits. Accurate models of devices are crucial for
obtaining realistic results from the simulation. Although
SPICE provides circuit designers with built-in models for
most widely used devices many devices still must be
modelled with subcircuit models in order to achieve
sufficient accuracy. The hardest part of creating a SPICE
model for a particular part is determining the parameter
values of subcircuit elements. With analytical methods the
problem quickly becomes impossible to manage. The
only remaining alternative is optimisation. Use of SPICE
OPUS optimisation capabilities for model parameter
extraction is presented. Three commonly used
optimisation methods are examined on examples and
discussed in terms of their sensitivity to initial parameter
values, speed and numeric stability.

1. Introduction

SPICE [1] is the de-facto standard for analog circuit
simulation. As every other CAD tool SPICE too is subject
to the known proverb »garbage in-garbage out«. This
means that without accurate models it is impossible to
obtain realistic simulation results that can be used in the
process of circuit design.

Device models are built into the SPICE simulator core
for most of the semiconductor devices. Together with
model parameters these device models provide the
information about behaviour of a particular part or device
in the circuit and are often referred to as a “part model”.

These built-in device models however do not always
provide sufficient accuracy for simulation of many parts
widely used in electronic circuits. Lets just take as an
example the Zener diode, the power MOS FET or the
SCR. There is no built-in device model available for
them. The solution to this problem is to model a particular
part with a subcircuit that represents the part’s behaviour.

Model parameter extraction is used to obtain the values
of model parameters from the data provided by the part
manufacturer in the datasheet. The procedure is quite
straightforward if the equations used to model the part’s
behaviour are simple. Often determining the most
important parameters that characterise a specific part (i.e.
Is, n and Rs for a diode) can be narrowed down to reading
a couple of characteristic points from a curve in the
datasheet and applying simple formulae to the obtained
data. Such models characterise the basic behaviour of a
specific part.

However if a more accurate part model is required the
above mentioned procedure is not sufficient. In order to
model various secondary effects additional devices are
added to the “core device” thus producing a subcircuit
model. Analytically determining the values of parameters
for all elements of such subcircuit is in most cases
impossible. The only remaining way is to use various
optimisation techniques for curve fitting. Curve fitting
also yields more accurate models than various methods
based on a couple of characteristic points.

2. State of the Art

Many software packages are available for generating
SPICE models. Packages included with commercial
SPICE simulators like IsSPICE [2] or PSPICE [3] rely on
a few characteristic points from the datasheet and so
called »rule of thumb« for determining the parameter
values for subcircuit elements. MODPEX [4] from Avant!
uses optimisation techniques for curve fitting but there is
no support available. Specific software is available for
parameter extraction for various models like the BSIM
MOS models [5].

Generally whenever a new model for some real-world
device or phenomenon is devised an article dealing with
model parameter extraction for that specific model is
published along with custom tailored software that is
capable of extracting parameters from measurement
results for that specific model.

In this article we present a unified approach for
modelling various real-world devices in SPICE. The
approach is based on the SPICE OPUS simulator and its
optimisation  capabilities. SPICE OPUS is an
enhancement of the SPICE3f4 simulator including
improved scripting language, optimisation facilities and
mixed-mode XSPICE extensions. It was developed by the
Group for Computer Aided Circuit Design at Faculty of
Electrical Engineering, University of Ljubljana. The
Windows95/98/NT, LINUX and SOLARIS release can be
downloaded from http://fides.fe.uni-lj.si/spice.

3. Methods

The first decision to make is whether to use a
numerical analysis package like MATLAB or the built-in
SPICE scripting language (NUTMEG) to implement the
optimisation procedure. NUTMEG was chosen for the
following reasons [6]:

- Using an external package to implement the

optimisation procedure greatly increases the



overhead by starting the simulator over and over
again whenever a cost function evaluation is
required.

- Due to the NUTMEG extensions in SPICE OPUS
the loss of flexibility over using external software
packages for optimisation is not critical.

- optimize command has already been implemented
in SPICE OPUS version of NUTMEG

Although the basic SPICE OPUS package includes
highly  flexible  optimisation  capabilities  some
modifications were necessary:

- interpolation of vectors from different plots had to
be fixed since it was broken in the original
Berkeley release of SPICE

- NUTMEG syntax was extended in order to make
importing of vectors from ASCII files possible

- logarithmic compression of search space for a
parameter was implemented in the optimize
command to aid optimisation convergence for
parameters which can range over multiple decades

- Since the DC characteristic is one of the most
common sources of information in the datasheets
DC analysis in SPICE OPUS was improved in
order to facilitate logarithmic sweep.

Three optimisation techniques that performed well on
test cases [7] were tested:

- constrained simplex algorithm [8]

- Hooke-Jeeves algorithm [9]

- simple genetic algorithm (GA) [10]

- simple GA with elitism

Constrained simplex search and Hooke-Jeeves search
both proved to be very efficient optimisation methods in
conjunction with SPICE. The constrained simplex and the
GA both choose the initial set of points from the
parameter space randomly. Hooke-Jeeves algorithm starts
from an initial point specified by user.

For the GA Gray encoding was used to encode
parameter values in chromosomes in order to moderate
the impact of mutation on characteristics of an individual.
Population size was 30. Chromosome length was set to 6
bytes per parameter (more than 270" discrete levels per
parameter’s range). Probability of mutation was set to
0.01 and crossover probability was set to 0.6. Elitism was
introduced into the population by automatically copying
the best individual into the next generation. The fitness of
individuals was based on the cost function in such manner
that the fitness of the individual with the lowest cost
function value was 5 times greater that the fitness of the
worst individual in the population.

The above mentioned optimisation techniques were
tested on two curve fitting problems: DC forward
characteristic and temperature dependence of a Shottky
diode with a guard ring and dynamic resistance
characteristic of a Zener diode.

4. Results and Discussion

4.1 Dynamic Resistance of a Zener Diode

Probably the hardest part of building a good Zener
diode model is modelling the dynamic resistance vs.
reverse current characteristic. The built-in SPICE diode
model [11] is virtually useless for this purpose since it
models the breakdown with a more or less constant
dynamic resistance that is equal to the series resistance of
the diode. The dynamic resistance of a Zener diode is
important when one wants to obtain realistic results from
an AC analysis.

The dynamic resistance can be modelled with two or
more parallel branches comprising an ordinary SPICE
diode model connected in series to a voltage source. Each
branch contributes 4 parameters for fitting (Is, » and Rs
for each diode and V- for the voltage source). A resistor
is connected in series with these parallel branches.

The cost function was defined as the absolute value
sum of differences between the logarithm of measured
and fitted differential resistance.
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Figure 1 : Zener diode reverse characteristic model.

For the purpose of comparing various optimisation
algorithms The Zener diode was BZX55 9V1. Reverse
characteristic was modelled with two parallel branches.
Two sets of initial values were tested. Initial values of
parameters were chosen as follows:

Initial 7: (RS, RS], RS2, [S], ISQ, nj n VdC], VdCQ) =
(11,1, 107 107, 1,1,0.9, 1.1)

Initial 2: (RS, RS], RS2, [S], ISQ, nj n VdC], VdCQ) =
(1,1,1,10°,10°,1,1,0.9, 1.1)

Initial 1 | Initial 2
Number of iterations 516 427
Optimisation time 17.6s 15.0s
Initial cost function value 3.65758 | 3.65757
Minimal cost function 0.353 0.458

Table 1: comparison of Hooke-Jeeves algorithm
performance for two initial points.

As it can be seen from Table 1 the Hooke-Jeeves
algorithm’s performance in terms of the minimal cost
function depends on the initial point due to local nature of
the method.

Table 2 is the summary of performance for the
constrained simplex method for the same search space as
for the Hooke-Jeeves method. By default the number of
points in the simplex (8) is twice the number of
parameters that are to be optimised. The points are



selected randomly from the search space so no initial
point needs to be provided explicitly.

The constrained simplex method performed worse than
Hooke-Jeeves. The minimal cost function didn’t improve
even if the number of points in the simplex was increased.

Points in simplex 18 30 60
Cost function evaluations 973 2077 4257
Optimisation time 30.5s | 67.2s | 130.7s
Minimal cost function 0.769 | 0.768 | 0.769

Table 2: performance of the constrained simplex
algorithm.

Table 3 summarises the performance of the simple GA
without elitism. As it can be seen the results are not very
encouraging although they are a bit better than the ones
obtained with the constrained simplex method.

Population size 10 20 30
Cost function evaluations 1210 2420 3630
Optimisation time 40.5s | 76.0s | 112.5s
Minimal cost function 0.697 | 0.778 | 0.635

Table 3: performance of the GA without elitism after 720
generations. pe.oss=0.6, Pmuaiion=0.01.

Figure 2 explains the poor performance of the GA.
Around generation 200 better individuals start to emerge.
However due to mutation and crossover they vanish
around generation 240. One solution to this problem
would be to decrease the probabilities of crossover and
mutation. This could slow down the evolution, which is
slow enough already.
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Figure 2: the population evolved by the simple GA
without elitism (population size 20).

In order to improve convergence, elitism was
introduced into the simple GA. The results for the
modified GA are in Table 4. The best individual after 720
generations is even better than the one obtained by the
Hooke-Jeeves search.

There are vast differences between best individuals for
various population sizes. Best results were obtained with
a population a bit larger than twice the number of
parameters.

Population size 10 20 30

Optimisation time 39.4s | 75.6s | 111.9s

Minimal cost function 0.667 | 0.211 | 0.597

Table 4: performance of the GA with elitism after 720
generations' pcrosszo' 6! pmutation:0~0]-

Figure 3 shows the evolution of the population with the
modified GA. As it can be seen the best individual
emerges somewhere around generation 7/00. Elitism helps
to preserve the best individual from disappearing with
crossover. The result of the optimisation is shown in
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Figure 3: the population evolved by the simple GA with
elitism (population size 20).
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Figure 4: result of parameter extraction with the modified
GA. The shorter curve represents values from the
datasheet.

4.2 Shottky Diode With a Guard Ring

A Shottky diode with a guard ring has a bit different
characteristics than an ordinary semiconductor diode. The
built-in SPICE diode model can't be fitted very well to the
DC characteristic of such diode. The solution is to model
the diode with a temperature dependent resistor and two
SPICE diodes connected in parallel (Figure 5). This
doubles the number of parameters (12: Is, n, Eg, Tnom
and XTI for each diode and Rs and TCI for the resistor).
Due to the nonlinear nature of the problem it is
impractical to determine the parameters analytically. The
parameters are fitted to two I,/V,, DC characteristics at
different temperatures.

Cost function was calculated for each curve as the
absolute value sum differences between the logarithm of



the expected and the fitted current. Then the largest of
these sums was taken as the cost function.

The diode wused was SB020 from General
Semiconductor. Since it is impractical to try multiple
initial points in order to find a good fit, Hooke-Jeeves
search was not applied to this problem. Only constrained
simplex method and modified GA were tested.
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Figure 5: model used for fitting the DC characteristic of
a guard-ring Shottky diode.

Constrained simplex required 7003 cost function
evaluations (40.2s) to find the optimal fit (cost function
value 0.622).
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Figure 6: result of parameter extraction with the modified
GA. Shorter curves stand for the values from the
datasheet.

For the modified GA the same encoding and
probabilities for crossover and mutation were used as in
the previous example. Population size was set to 30. An
individual with cost function value 0.743 emerges after 80
generations. After 7120 generations (3630 cost function
evaluations, 743.5s) the best individual’s cost function
value becomes 0.662 which is not far from the solution
obtained by the constrained simplex method. Figure 6
shows the result obtained by the modified GA.

5. Conclusion

The use optimisation algorithms in SPICE OPUS for
model parameter extraction was demonstrated on two
examples. The results show that even a robust

optimisation algorithm such as constrained simplex can
yield unsatisfactory results.

The use of a simple GA was presented. Due to its bad
performance elitism was added to the GA in SPICE
OPUS. The modified algorithm showed significant
improvement in convergence speed over the original one
and is capable of delivering results that are comparable or
better than the ones obtained by the constrained simplex
method.
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